Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2011, Issue 1(22), Pages 196–220
DOI: https://doi.org/10.14498/vsgtu860
(Mi vsgtu860)
 

Procedings of the 2nd International Conference "Mathematical Physics and its Applications"
Mechanics

An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity

V. A. Kovaleva, Yu. N. Radaevb

a Dept. of Applied Mathematics, Moscow City Government University of Management Moscow
b Lab. of Modeling in Solid Mechanics, A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow
Full-text PDF (732 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The present paper is devoted to a study of a natural $12$-dimensional symmetry algebra of the three-dimensional hyperbolic differential equations of the perfect plasticity, obtained by D. D. Ivlev in 1959 and formulated in isostatic coordinates. An optimal system of one-dimensional subalgebras constructing algorithm for the Lie algebra is proposed. The optimal system (total $187$ elements) is shown consisting of of a 3-parametrical element, twelve 2-parametrical elements, sixty six 1-parametrical elements and one hundred and eight individual elements.
Keywords: theory of plasticity, isostatic coordinate, symmetry group, symmetry algebra, subalgebra, optimal system, algorithm.
Original article submitted 20/XII/2010
revision submitted – 18/II/2011
Bibliographic databases:
Document Type: Article
UDC: 539.3
MSC: 74C05
Language: Russian
Citation: V. A. Kovalev, Yu. N. Radaev, “An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 196–220
Citation in format AMSBIB
\Bibitem{KovRad11}
\by V.~A.~Kovalev, Yu.~N.~Radaev
\paper An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 1(22)
\pages 196--220
\mathnet{http://mi.mathnet.ru/vsgtu860}
\crossref{https://doi.org/10.14498/vsgtu860}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu860
  • https://www.mathnet.ru/eng/vsgtu/v122/p196
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:484
    Full-text PDF :232
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024