|
This article is cited in 10 scientific papers (total in 12 papers)
Differential Equations
Hoff Equation Stability on a Graph
G. A. Sviridyuka, S. A. Zagrebinaa, P. O. Pivovarovab a Dept. of Mathematical Physics Equations, Southern Ural State University, Chelyabinsk
b Dept. of Mathematical Analysis, Magnitogorsk State University, Magnitogorsk
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
We consider the stability of stationary solutions of the Hoff equation on a graph, which is a model design of I-beams. The basic approach second Lyapunov method, modified according to our situation. In the end explains the technical meaning of the parameter $\lambda_0$.
Keywords:
Hoff equations, stability, Lyapunov function, graph.
Original article submitted 04/IX/2009 revision submitted – 13/III/2010
Citation:
G. A. Sviridyuk, S. A. Zagrebina, P. O. Pivovarova, “Hoff Equation Stability on a Graph”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010), 6–15
Linking options:
https://www.mathnet.ru/eng/vsgtu735 https://www.mathnet.ru/eng/vsgtu/v120/p6
|
Statistics & downloads: |
Abstract page: | 783 | Full-text PDF : | 277 | References: | 84 | First page: | 1 |
|