Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2024, Volume 28, Number 3, Pages 407–425
DOI: https://doi.org/10.14498/vsgtu2082
(Mi vsgtu2082)
 

Differential Equations and Mathematical Physics

Khalouta transform via different fractional derivative operators

A. Khalouta

Université Ferhat Abbas de Sétif 1, Sétif, 19000, Algeria (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Recently, the author defined and developed a new integral transform namely the Khalouta transform, which is a generalization of many well-known integral transforms. The purpose of this paper is to extend this new integral transform to include different fractional derivative operators. The fractional derivatives are described in the sense of Riemann–Liouville, Liouville–Caputo, Caputo–Fabrizio, Atangana–Baleanu–Riemann–Liouville, and Atangana–Baleanu–Caputo. Theorems dealing with the properties of the Khalouta transform for solving fractional differential equations using the mentioned fractional derivative operators are proven. Several examples are presented to verify the reliability and effectiveness of the proposed technique. The results show that the Khalouta transform is more efficient and useful in dealing with fractional differential equations.
Keywords: fractional differential equations, Khalouta transform, Riemann–Liouville derivative, Liouville–Caputo derivative, Caputo–Fabrizio derivative, Atangana–Baleanu–Riemann–Liouville derivative, Atangana–Baleanu–Caputo derivative, exact solution
Received: February 2, 2024
Revised: September 20, 2024
Accepted: September 27, 2024
First online: November 12, 2024
Document Type: Article
UDC: 519.642.2
Language: English
Citation: A. Khalouta, “Khalouta transform via different fractional derivative operators”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:3 (2024), 407–425
Citation in format AMSBIB
\Bibitem{Kha24}
\by A.~Khalouta
\paper Khalouta transform via different fractional derivative operators
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2024
\vol 28
\issue 3
\pages 407--425
\mathnet{http://mi.mathnet.ru/vsgtu2082}
\crossref{https://doi.org/10.14498/vsgtu2082}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2082
  • https://www.mathnet.ru/eng/vsgtu/v228/i3/p407
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024