Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2024, Volume 28, Number 2, Pages 378–389
DOI: https://doi.org/10.14498/vsgtu2061
(Mi vsgtu2061)
 

Short Communication
Mechanics of Solids

Identification of the parameters of a rod with a longitudinal rectangular groove using two spectra of natural frequencies of bending vibrations

I. М. Utyasheva, A. F. Fatkhelislamovb

a Mavlyutov Institute of Mechanics, Ufa Centre RAS, Ufa, 450054, Russian Federation
b Ufa University of Science and Technology, Ufa, 450076, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The inverse coefficient problem involves determining the geometric parameters of a longitudinal rectangular groove based on the natural frequencies of the bending vibrations of a rectangular rod. It is assumed that the groove does not extend along the entire length of the rod, but rather from a certain point to the right end. To solve the problem, the rod with the longitudinal groove is modeled as two sections: the first section without a groove and the second section with a groove.
Mating conditions are applied at the connection point, where deflection values, rotation angles, bending moments, and shear forces are equated. The behavior of the natural frequencies of bending vibrations when changing the length of the groove was investigated. A solution method is proposed that allows for determining the required parameters based on a finite number of natural frequencies of bending vibrations. It is shown that the solution is unambiguous when using frequency spectra with respect to mutually perpendicular axes.
Keywords: bending vibrations, natural frequency, longitudinal groove, inverse problem, moment of inertia, error estimation, rectangular rod
Funding agency Grant number
Russian Science Foundation 23-21-00420
The work was supported by the grant of the Russian Science Foundation no. 23–21–00420, https://rscf.ru/en/project/23-21-00420/.
Received: September 8, 2023
Revised: October 31, 2023
Accepted: November 1, 2023
First online: September 19, 2024
Bibliographic databases:
Document Type: Article
UDC: 519.63:534.113
MSC: 74J25
Language: Russian
Citation: I. М. Utyashev, A. F. Fatkhelislamov, “Identification of the parameters of a rod with a longitudinal rectangular groove using two spectra of natural frequencies of bending vibrations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:2 (2024), 378–389
Citation in format AMSBIB
\Bibitem{UtyFat24}
\by I.~М.~Utyashev, A.~F.~Fatkhelislamov
\paper Identification of the parameters of a rod with a longitudinal
rectangular groove using two spectra of natural frequencies
of bending vibrations
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2024
\vol 28
\issue 2
\pages 378--389
\mathnet{http://mi.mathnet.ru/vsgtu2061}
\crossref{https://doi.org/10.14498/vsgtu2061}
\edn{https://elibrary.ru/WTKDQB}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2061
  • https://www.mathnet.ru/eng/vsgtu/v228/i2/p378
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024