Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2023, Volume 27, Number 4, Pages 607–620
DOI: https://doi.org/10.14498/vsgtu2027
(Mi vsgtu2027)
 

Differential Equations and Mathematical Physics

Inverse problem for an equation of mixed parabolic-hyperbolic type with a characteristic line of change

D. K. Durdievab

a Bukhara Branch of the Institute of Mathematics named after V.I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan, Bukhara, 705018, Uzbekistan
b Bukhara State University, Bukhara, 705018, Uzbekistan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This study investigates direct and inverse problems for a model equation of mixed parabolic-hyperbolic type. In the direct problem, an analogue of the Tricomi problem is considered for this equation with a characteristic line of type change. The unknown in the inverse problem is a variable coefficient of the lower-order term in the parabolic equation. To determine it relative to the solution defined in the parabolic part of the domain, an integral overdetermination condition is specified. Local theorems of unique solvability of the posed problems in terms of classical solutions are proven.
Keywords: parabolic-hyperbolic equation, characteristic, Green's function, inverse problem, principle of compressed mappings
Received: May 30, 2023
Revised: November 10, 2023
Accepted: December 13, 2023
First online: December 25, 2023
Bibliographic databases:
Document Type: Article
UDC: 517.956.6
MSC: 35R11
Language: Russian
Citation: D. K. Durdiev, “Inverse problem for an equation of mixed parabolic-hyperbolic type with a characteristic line of change”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023), 607–620
Citation in format AMSBIB
\Bibitem{Dur23}
\by D.~K.~Durdiev
\paper Inverse problem for an equation of mixed parabolic-hyperbolic type with a characteristic line of change
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2023
\vol 27
\issue 4
\pages 607--620
\mathnet{http://mi.mathnet.ru/vsgtu2027}
\crossref{https://doi.org/10.14498/vsgtu2027}
\edn{https://elibrary.ru/AFYBZR}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2027
  • https://www.mathnet.ru/eng/vsgtu/v227/i4/p607
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024