Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, Volume 26, Number 4, Pages 607–629
DOI: https://doi.org/10.14498/vsgtu1942
(Mi vsgtu1942)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

Boundary value problems for Sobolev type equations of fractional order with memory effect

M. Kh. Beshtokov

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS, Nal'chik, 360000, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Boundary value problems are studied for a one-dimensional Sobolev type integro-differential equation with boundary conditions of the first and third kind with two fractional differentiation operators $\alpha$ and $\beta$ of different orders. Difference schemes of the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ are constructed for $\alpha\neq\beta$. Using the method of energy inequalities, a priori estimates are obtained in the differential and difference interpretations, from which the existence, uniqueness, stability, and convergence of the solution of the difference problem to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme follow. Numerical experiments were carried out to illustrate the results obtained in the paper.
Keywords: Sobolev type equation, fractional derivative, memory effect, difference schemes, a priori estimate, stability and convergence.
Received: July 15, 2022
Revised: November 19, 2022
Accepted: December 16, 2022
First online: December 29, 2022
Bibliographic databases:
Document Type: Article
UDC: 519.642.2
MSC: 65L05, 65N12, 65R20
Language: Russian
Citation: M. Kh. Beshtokov, “Boundary value problems for Sobolev type equations of fractional order with memory effect”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:4 (2022), 607–629
Citation in format AMSBIB
\Bibitem{Bes22}
\by M.~Kh.~Beshtokov
\paper Boundary value problems for Sobolev type equations of~fractional order with memory effect
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2022
\vol 26
\issue 4
\pages 607--629
\mathnet{http://mi.mathnet.ru/vsgtu1942}
\crossref{https://doi.org/10.14498/vsgtu1942}
\edn{https://elibrary.ru/AUKCBX}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1942
  • https://www.mathnet.ru/eng/vsgtu/v226/i4/p607
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :120
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024