Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, Volume 26, Number 1, Pages 179–189
DOI: https://doi.org/10.14498/vsgtu1907
(Mi vsgtu1907)
 

Mathematical Modeling, Numerical Methods and Software Complexes

On a new Lagrangian view on the evolution of vorticity in spatial flows

I. A. Maksimenkoa, V. V. Markovbcd

a Technical University of Munich, Munich, 80333, Germany
b Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, 119991, Russian Federation
c Lomonosov Moscow State University, Institute of Mechanics, Moscow, 119192, Russian Federation
d Scientific Research Institute of System Analysis, Moscow, 117218, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The purpose of the study is to extend to the spatial case proposed by G. B. Sizykh approach to a two-dimensional vorticity evolution, which is based on the idea of considering a vorticity evolution in the form of such a motion of vortex lines and tubes that the intensity of these tubes changes over time according to a predefined law. Method. Thorough analysis is determined by describing the flow velocity field of an ideal incompressible fluid and a viscous gas in the general case, using the idea of the movement of imaginary particles. Results. For any given time law of change of velocity circulation (i. e. for an exponential decay) of a real fluid along the contours the method of evaluating the field of velocity of such contours and vortex tubes is proposed (e. g. getting a field of imaginary particles, which transfer them). It is established that for a given time law the velocity of imaginary particles is determined ambiguously, and the method of how to adjust their motion preserving defined law of circulation change is proposed. Conclusion. A new Lagrangian approach to the evolution of vorticity in three-dimensional flows is derived, as well as the expressions for the contours' velocity, which imply stated changing over the time of the velocity circulation of a real fluid along any contour. This theoretical result can be utilized in spatial modifications of the viscous vortex domain method to limit the number of vector tubes used in calculations.
Keywords: contour velocity, contour intensity, imaginary fluid motion, Zoravski's criterion, Friedmann's theorem, viscous vortex domain method.
Received: February 7, 2022
Revised: February 23, 2022
Accepted: February 24, 2022
First online: March 16, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.958:531.332
MSC: 76N15
Language: Russian
Citation: I. A. Maksimenko, V. V. Markov, “On a new Lagrangian view on the evolution of vorticity in spatial flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022), 179–189; J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 26:1 (2022), 179–189
Citation in format AMSBIB
\Bibitem{MakMar22}
\by I.~A.~Maksimenko, V.~V.~Markov
\paper On a new Lagrangian view on the evolution of vorticity in~spatial flows
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2022
\vol 26
\issue 1
\pages 179--189
\mathnet{http://mi.mathnet.ru/vsgtu1907}
\crossref{https://doi.org/10.14498/vsgtu1907}
\elib{https://elibrary.ru/item.asp?id=48309003}
\edn{https://elibrary.ru/HFRFPX}
\transl
\jour J. Samara State Tech. Univ., Ser. Phys. Math. Sci.
\yr 2022
\vol 26
\issue 1
\pages 179--189
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000791807200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85130462273}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1907
  • https://www.mathnet.ru/eng/vsgtu/v226/i1/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:341
    Russian version PDF:153
    English version PDF:33
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024