Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, Volume 26, Number 2, Pages 380–395
DOI: https://doi.org/10.14498/vsgtu1904
(Mi vsgtu1904)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communication
Differential Equations and Mathematical Physics

A problem with nonlocal conditions for a one-dimensional parabolic equation

A. B. Beylina, A. V. Bogatovb, L. S. Pulkinab

a Samara State Technical University, Samara, 443100, Russain Federation
b Samara National Research University, Samara, 443086, Russian Federation
Full-text PDF (977 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In present paper, we consider a problem with nonlocal conditions for parabolic equation and show that there exists a unique weak solution in Sobolev space. The main tool to prove the existence of a unique weak solution to the problem is a priori estimates derived by authors. We also note a connection between Steklov nonlocal conditions and first kind integral conditions. This connection enables interpret the problem under consideration as a problem with perturbed Steklov nonlocal conditions. Obtained results may be useful for certain class of problems including inverse problems.
Keywords: parabolic equation, boundary-value problem, nonlocal conditions, generalized solution; Sobolev spaces.
Received: January 24, 2022
Revised: March 2, 2022
Accepted: May 23, 2022
First online: May 26, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35L20, 35B45, 35D30
Language: Russian
Citation: A. B. Beylin, A. V. Bogatov, L. S. Pulkina, “A problem with nonlocal conditions for a one-dimensional parabolic equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022), 380–395
Citation in format AMSBIB
\Bibitem{BeyBogPul22}
\by A.~B.~Beylin, A.~V.~Bogatov, L.~S.~Pulkina
\paper A problem with nonlocal conditions for a one-dimensional parabolic equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2022
\vol 26
\issue 2
\pages 380--395
\mathnet{http://mi.mathnet.ru/vsgtu1904}
\crossref{https://doi.org/10.14498/vsgtu1904}
\edn{https://elibrary.ru/USPHOK}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1904
  • https://www.mathnet.ru/eng/vsgtu/v226/i2/p380
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :179
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024