Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2021, Volume 25, Number 3, Pages 588–595
DOI: https://doi.org/10.14498/vsgtu1861
(Mi vsgtu1861)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Communication
Mathematical Modelling

Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave

G. B. Sizykh

Moscow Aviation Institute (National Research University), Moscow,125993, Russian Federation
Full-text PDF (906 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Stationary flows of an ideal gas behind the detached bow shock are investigated in the general 3D case. The well-known integral invariant (V.N. Golubkin, G.B. Sizykh, 2019), generalizing the axisymmetric invariant of (L. Crocco, 1937) to asymmetric flows, is a curvilinear integral over a closed vortex line (such lines lie on isentropic surfaces), in which the integrand is the pressure divided by the vorticity. This integral takes on the same value on all (closed) vortex lines lying on one isentropic surface. It was obtained after the discovery of the fact that the vortex lines are closed in the flow behind the shock in the general 3D case. Recently, another family of closed lines behind the shock was found, lying on isentropic surfaces (G.B. Sizykh, 2020). It is given by vector lines a — the vector product of the gas velocity and the gradient of the entropy function. In the general 3D case, these lines and vortex lines do not coincide.
In the presented study, an attempt is made to find the integral invariant associated with closed vector lines a. Without using asymptotic, numerical and other approximate methods, the Euler equations are analyzed for the classical model of the flow of an ideal perfect gas with constant heat capacities. The concept of imaginary particles “carrying” the streamlines of a real gas flow, based on the Helmholtz–Zoravsky criterion, is used. A new integral invariant of isentropic surfaces is obtained. It is shown that the curvilinear integral over a closed vector line a, in which the integrand is the pressure divided by the projection of the vorticity on the direction a, has the same values for all lines a lying on one isentropic surface. This invariant, like another previously known integral invariant (V.N. Golubkin, G.B. Sizykh, 2019), in the particular case of non-swirling axisymmetric flows, coincides with the non-integral invariant of L. Crocco and generalizes it to the general spatial case.
Keywords: Helmholtz–Zorawski criterion, isoenergetic flows, vorticity, detached bow shock, Crocco invariant, integral invariant of isentropic surfaces.
Received: April 20, 2021
Revised: August 12, 2021
Accepted: August 31, 2021
First online: September 30, 2021
Bibliographic databases:
Document Type: Article
UDC: 533.6.011
MSC: 76J20, 76L99, 76N15
Language: Russian
Citation: G. B. Sizykh, “Second integral generalization of the Crocco invariant for 3D flows behind detached bow shock wave”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 588–595
Citation in format AMSBIB
\Bibitem{Siz21}
\by G.~B.~Sizykh
\paper Second integral generalization of the Crocco invariant for~3D flows behind detached bow shock wave
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2021
\vol 25
\issue 3
\pages 588--595
\mathnet{http://mi.mathnet.ru/vsgtu1861}
\crossref{https://doi.org/10.14498/vsgtu1861}
\zmath{https://zbmath.org/?q=an:7499962}
\elib{https://elibrary.ru/item.asp?id=46801530}
\edn{https://elibrary.ru/LRHSER}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1861
  • https://www.mathnet.ru/eng/vsgtu/v225/i3/p588
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024