Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2021, Volume 25, Number 1, Pages 51–66
DOI: https://doi.org/10.14498/vsgtu1845
(Mi vsgtu1845)
 

This article is cited in 16 scientific papers (total in 16 papers)

Differential Equations and Mathematical Physics

Initial-boundary value problem for the equation of forced vibrations of a cantilever beam

K. B. Sabitov, O. V. Fadeeva

Samara State Technical University, Samara, 443100, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In this paper, an initial-boundary value problem for the equation of forced vibrations of a cantilever beam is studied. Such a linear differential equation of the fourth order describes bending transverse vibrations of a homogeneous beam under the action of an external force in the absence of rotational motion during bending.
The system of eigenfunctions of the one-dimensional spectral problem, which is orthogonal and complete in the space of square-summable functions, is constructed by the method of separation of variables. The uniqueness of the solution to the initial-boundary value problem is proved in two ways: (i) using the energy integral; (ii) relying on the completeness property of the system of eigenfunctions.
The solution to the problem was first found in the absence of an external force and homogeneous boundary conditions, and then the general case was considered in the presence of an external force and inhomogeneous boundary conditions. In both cases, the solution of the problem is constructed as the sum of the Fourier series.
Estimates of the coefficients of these series and the system of eigenfunctions are obtained. On the basis of the established estimates, sufficient conditions were found for the initial functions, the fulfillment of which ensures the uniform convergence of the constructed series in the class of regular solutions of the beam vibration equation, i.e. existence theorems for the solution of the stated initial-boundary value problem are proved. Based on the solutions obtained, the stability of the solutions of the initial-boundary value problem is established depending on the initial data and the right-hand side of the equation under consideration in the classes of square-summable and continuous functions.
Keywords: cantilevered beam, forced vibrations, initial and boundary conditions, spectral method, analytical solution, uniqueness, existence, stability.
Received: February 11, 2021
Revised: February 16, 2021
Accepted: March 10, 2021
First online: March 31, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.954
MSC: 35G16
Language: Russian
Citation: K. B. Sabitov, O. V. Fadeeva, “Initial-boundary value problem for the equation of forced vibrations of a cantilever beam”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 51–66
Citation in format AMSBIB
\Bibitem{SabFad21}
\by K.~B.~Sabitov, O.~V.~Fadeeva
\paper Initial-boundary value problem for the equation of forced vibrations of~a~cantilever beam
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2021
\vol 25
\issue 1
\pages 51--66
\mathnet{http://mi.mathnet.ru/vsgtu1845}
\crossref{https://doi.org/10.14498/vsgtu1845}
\zmath{https://zbmath.org/?q=an:1474.35223}
\elib{https://elibrary.ru/item.asp?id=45604170}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1845
  • https://www.mathnet.ru/eng/vsgtu/v225/i1/p51
  • This publication is cited in the following 16 articles:
    1. A. K. Urinov, M. S. Azizov, “Initial-Boundary Value Problem for a Degenerate High Even-Order Partial Differential Equation with the Bessel Operator”, Lobachevskii J Math, 45:2 (2024), 864  crossref
    2. Yu. P. Apakov, S. M. Mamazhonov, “Kraevaya zadacha dlya neodnorodnogo uravneniya chetvertogo poryadka s postoyannymi koeffitsientami”, Chelyab. fiz.-matem. zhurn., 8:2 (2023), 157–172  mathnet  crossref
    3. U. D. Durdiev, “Obratnaya zadacha ob istochnike dlya uravneniya vynuzhdennykh kolebanii balki”, Izv. vuzov. Matem., 2023, no. 8, 10–22  mathnet  crossref
    4. U. D. Durdiev, Z. R. Bozorov, “Nonlocal inverse problem for determining the unknown coefficient in the beam vibration equation”, J. Appl. Industr. Math., 17:2 (2023), 281–290  mathnet  crossref  crossref
    5. A. K. Urinov, M. S. Azizov, “About an initial boundary problem for a degenerate higher even order partial differential equation”, J. Appl. Industr. Math., 17:2 (2023), 414–426  mathnet  crossref  crossref
    6. A. K. Urinov, D. D. Oripov, “O razreshimosti odnoi nachalno-granichnoi zadachi dlya vyrozhdayuschegosya uravneniya vysokogo chetnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 27:4 (2023), 621–644  mathnet  crossref
    7. Yu. P. Apakov, S. M. Mamazhonov, “Boundary Value Problem for an Inhomogeneous Fourth-Order Equation with Lower-Order Terms”, Diff Equat, 59:2 (2023), 188  crossref
    8. U. D. Durdiev, “Inverse Source Problem for the Equation of Forced Vibrations of a Beam”, Russ Math., 67:8 (2023), 7  crossref
    9. U. D Durdiev, “Obratnaya zadacha po opredeleniyu neizvestnogo koeffitsienta uravneniya kolebaniya balki v beskonechnoy oblasti”, Differentsialnye uravneniya, 59:4 (2023), 456  crossref
    10. O. V. Fadeeva, “Inverse Problems for the Equation of Vibrations of a Canister Beam to Find the Source”, Prikladnaya matematika i mekhanika, 87:4 (2023), 661  crossref
    11. U. D. Durdiev, “Inverse Problem of Determining the Unknown Coefficient in the Beam Vibration Equation in an Infinite Domain”, Diff Equat, 59:4 (2023), 462  crossref
    12. Yusupzhon Apakov, Sanzharbek Mamazhonov, “REShENIE KRAEVOI ZADAChI DLYa NEODNORODNOGO URAVNENIYa ChETVERTOGO PORYaDKA S NESIMMETRIChNYMI USLOVIYaMI PO VREMENI”, VOGUMFT, 2023, no. 2(3), 15  crossref
    13. Yu. P Apakov, S. M Mamazhonov, “Kraevaya zadacha dlya neodnorodnogo uravneniya chetvertogo poryadka s mladshimi chlenami”, Differentsialnye uravneniya, 59:2 (2023), 183  crossref
    14. A. Grigorenko, T. Duyun, “SIMULATION OF NATURAL FREQUENCIES AND FORCED OSCILLATION MAGNITUDES OF A VERTICAL MILLING MACHINE”, Bulletin of Belgorod State Technological University named after. V. G. Shukhov, 8:6 (2023), 76  crossref
    15. A. K. Urinov, M. S. Azizov, “Nachalno-granichnaya zadacha dlya uravneniya v chastnykh proizvodnykh vysshego chetnogo poryadka s operatorom Besselya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:2 (2022), 273–292  mathnet  crossref
    16. U. D. Durdiev, “Inverse Problem of Determining an Unknown Coefficient in the Beam Vibration Equation”, Diff Equat, 58:1 (2022), 36  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:713
    Full-text PDF :559
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025