Abstract:
The present paper is devoted to the problem of boundary conditions formulation in the growing micropolar solid mechanics. The static equations of the micropolar continuum in terms of relative tensors (pseudotensors) are derived due to virtual work principle for a solid of constant staff. The constitutive quadratic form of the elastic potential (treated as an absolute scalar) for a linear hemitropic micropolar solid is presented and discussed. The constitutive equations for symmetric and antisymmetric parts of force and couple stress tensors are given. The final forms of the static equations for the hemitropic micropolar continuum in terms of displacements and microrotations rates are obtained including the case of growing processes.
A transformation of the equilibrium equations is proposed to obtain boundary conditions on the propagating growing surface in terms of relative tensors in the form of differential constraints. Those are valid for a wide range of materials and metamaterials. The algebra of rational relative invariants is intensively used for deriving the constitutive relations on the growing surface.
Systems of joint algebraic rational relative invariants for force, couple stress tensors and also unit normal and tangent vectors to propagating growing surface are obtained, including systems of invariants sensitive to mirror reflections and 3D-space inversions.
This study was in part financially supported by the Ministry of Science and Higher Education of the Russian Federation (State Registration Number AAAA–A20–120011690132–4) and by the Russian Foundation for Basic Research projects nos. 18–01–00844, 19–51–60001, 20–01–00666.
Citation:
E. V. Murashkin, Yu. N. Radayev, “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444
\Bibitem{MurRad20}
\by E.~V.~Murashkin, Yu.~N.~Radayev
\paper On a micropolar theory of growing solids
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2020
\vol 24
\issue 3
\pages 424--444
\mathnet{http://mi.mathnet.ru/vsgtu1792}
\crossref{https://doi.org/10.14498/vsgtu1792}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000608532700002}
\elib{https://elibrary.ru/item.asp?id=45631179}
Linking options:
https://www.mathnet.ru/eng/vsgtu1792
https://www.mathnet.ru/eng/vsgtu/v224/i3/p424
This publication is cited in the following 32 articles:
E. V. Murashkin, Yu. N. Radaev, “Dvumernye figury Naya dlya gemitropnykh mikropolyarnykh uprugikh tel”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:1 (2024), 109–122
E. V. Murashkin, Y. N. Radayev, “On Algebraic Triple Weights Formulation of Micropolar Thermoelasticity”, Mech. Solids, 59:1 (2024), 555
E. V. Murashkin, Y. N. Radayev, “Theory of Poisson's Ratio for a Thermoelastic Micropolar Acentric Isotropic Solid”, Lobachevskii J Math, 45:5 (2024), 2378
E. Yu. Krylova, E. V. Murashkin, Y. N. Radaev, “The Nye Cells and Figures for Athermic Hemitropic, Isotropic, and Ultraisotropic Micropolar Elastic Solids”, Mech. Solids, 59:3 (2024), 1311
E. V. Murashkin, Yu. N. Radaev, “Volnovye chisla garmonicheskikh ploskikh voln translyatsionnykh i spinornykh peremeschenii v poluizotropnoi termouprugoi srede”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:3 (2024), 445–461
E. Yu. Krylova, E. V. Murashkin, Yu. N. Radaev, “The nye cells and figures for athermic hemitropic, isotropic and ultraisotropic micropolar elastic solids”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, no. 3
E. V. Murashkin, Y. N. Radayev, “Characteristic Constitutive Numbers in Semi-Isotropic Coupled Thermoelasticity”, Mech. Solids, 59:4 (2024), 1856
E. V. Murashkin, Yu. N. Radaev, “Teploprovodnost mikropolyarnykh tel, chuvstvitelnykh k zerkalnym otrazheniyam prostranstva”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 165, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2023, 389–403
E. V. Murashkin, Yu. N. Radaev, “Coupled Thermoelasticity of Hemitropic Media. Pseudotensor Formulation”, Mech. Solids, 58:3 (2023), 802
E. V. Murashkin, Yu. N. Radaev, “Coupled Thermoelasticity of Hemitropic Media. Pseudotensor Formulation”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2023, no. 3, 163
E. V. Murashkin, Yu. N. Radayev, “Heat Transfer in Anisotropic Micropolar Solids”, Mech. Solids, 58:9 (2023), 3111
E.V. Murashkin, Yu.N. Radaev, “On the polyvariance of the base equations of coupled micropolar thermoelasticity”, Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. Seriya: Mekhanika predelnogo sostoyaniya, 2023, no. 3(57), 112
E. V. Murashkin, Y. N. Radayev, “Two-Dimensional Nye Figures for Some Micropolar Elastic Solids”, Mech. Solids, 58:6 (2023), 2254
Evgenii V. Murashkin, Advanced Structured Materials, 185, Solid Mechanics, Theory of Elasticity and Creep, 2023, 237