Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2021, Volume 25, Number 1, Pages 21–34
DOI: https://doi.org/10.14498/vsgtu1783
(Mi vsgtu1783)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differential Equations and Mathematical Physics

The problem with shift for a degenerate hyperbolic equation of the first kind

Zh. A. Balkizov

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS, Nal'chik, 360000, Russian Federation
Full-text PDF (932 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: For a degenerate first-order hyperbolic equation of the second order containing a term with a lower derivative, we study two boundary value problems with an offset that generalize the well-known first and second Darboux problems. Theorems on an existence of the unique regular solution of problems are proved under certain conditions on given functions and parameters included in the formulation of the problems under study. The properties of all regular solutions of the equation under consideration are revealed, which are analogues of the mean value theorems for the wave equation.
Keywords: degenerate hyperbolic equations, Goursat problem, Darboux problem, problem with shift, mean value theorem.
Received: April 20, 2020
Revised: February 12, 2021
Accepted: March 10, 2021
First online: March 29, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.956.326
MSC: 35L80, 35L81
Language: Russian
Citation: Zh. A. Balkizov, “The problem with shift for a degenerate hyperbolic equation of the first kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 21–34
Citation in format AMSBIB
\Bibitem{Bal21}
\by Zh.~A.~Balkizov
\paper The problem with shift for a degenerate hyperbolic equation of the first kind
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2021
\vol 25
\issue 1
\pages 21--34
\mathnet{http://mi.mathnet.ru/vsgtu1783}
\crossref{https://doi.org/10.14498/vsgtu1783}
\zmath{https://zbmath.org/?q=an:1474.35486}
\elib{https://elibrary.ru/item.asp?id=45604168}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1783
  • https://www.mathnet.ru/eng/vsgtu/v225/i1/p21
  • This publication is cited in the following 3 articles:
    1. Zh. A. Balkizov, “Vnutrennekraevaya zadacha so smescheniem dlya smeshanno-giperbolicheskogo uravneniya vtorogo poryadka”, Doklady AMAN, 23:1 (2023), 11–19  mathnet  crossref  mathscinet  elib
    2. R. Kh. Makaova, “Ob odnoi smeshannoi zadache dlya vyrozhdayuschegosya giperbolicheskogo uravneniya tretego poryadka”, Vestnik KRAUNTs. Fiz.-mat. nauki, 44:3 (2023), 19–29  mathnet  crossref
    3. Menglibay Kh. Ruziev, Nargiza T. Yuldasheva, “Nonlocal Boundary Value Problem for a Mixed Type Equation with Fractional Partial Derivative”, J Math Sci, 274:2 (2023), 275  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :250
    References:54
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025