Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, Volume 24, Number 1, Pages 199–208
DOI: https://doi.org/10.14498/vsgtu1730
(Mi vsgtu1730)
 

Short Communication
Mechanics of Solids

Integro-differential equations of the second boundary value problem of linear elasticity theory. Communication 2. Inhomogeneous anisotropic body

V. V. Struzhanov

Institute of Engineering Science, Urals Branch, Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In communication 1, the integro-differential equations of the second boundary value problem of the theory of elasticity for a homogeneous isotropic body were considered. The results obtained are extended to boundary value problems for the general case of an inhomogeneous anisotropic body. It is shown that the integro-differential equations found are also Fredholm type equations. The existence and uniqueness of their solution is proved, the conditions under which the solution can be found by the method of successive approximations are determined. An example of calculating the residual stresses in an inhomogeneous quenched cylinder is given.
Keywords: second boundary-value problem, inhomogeneous anisotropic body, integro-differential equation, spectral radius, successive approximation, second kind Fredholm equations, iteration convergence.
Received: July 30, 2019
Revised: January 27, 2020
Accepted: February 10, 2020
First online: March 12, 2020
Bibliographic databases:
Document Type: Article
UDC: 539.3
MSC: 74C10
Language: Russian
Citation: V. V. Struzhanov, “Integro-differential equations of the second boundary value problem of linear elasticity theory. Communication 2. Inhomogeneous anisotropic body”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020), 199–208
Citation in format AMSBIB
\Bibitem{Str20}
\by V.~V.~Struzhanov
\paper Integro-differential equations of the second boundary value problem of linear elasticity theory.
Communication~2.~Inhomogeneous anisotropic body
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2020
\vol 24
\issue 1
\pages 199--208
\mathnet{http://mi.mathnet.ru/vsgtu1730}
\crossref{https://doi.org/10.14498/vsgtu1730}
\elib{https://elibrary.ru/item.asp?id=43531551}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1730
  • https://www.mathnet.ru/eng/vsgtu/v224/i1/p199
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025