Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2019, Volume 23, Number 3, Pages 417–429
DOI: https://doi.org/10.14498/vsgtu1713
(Mi vsgtu1713)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

On a mathematical model of non-isothermal creeping flows of a fluid through a given domain

A. A. Domnicha, E. S. Baranovskiib, M. A. Artemovb

a Russian Air Force Military Educational and Scientific Center of the "N. E. Zhukovskiy and Yu. A. Gagarin Air Force Academy", Voronezh, 394064, Russian Federation
b Voronezh State University, Voronezh, 394018, Russian Federation
Full-text PDF (977 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study a mathematical model describing steady creeping flows of a non-uniformly heated incompressible fluid through a bounded 3D domain with locally Lipschitz boundary. The model under consideration is a system of second-order nonlinear partial differential equations with mixed boundary conditions. On in-flow and out-flow parts of the boundary the pressure, the temperature and the tangential component of the velocity field are prescribed, while on impermeable solid walls the no-slip condition and a Robin-type condition for the temperature are used. For this boundary-value problem, we introduce the concept of a weak solution (a pair “velocity–temperature”), which is defined as a solution to some system of integral equations. The main result of the work is a theorem on the existence of weak solutions in a subspace of the Cartesian product of two Sobolev's spaces. To prove this theorem, we give an operator interpretation of the boundary value problem, derive a priori estimates of solutions, and apply the Leray–Schauder fixed point theorem. Moreover, energy equalities are established for weak solutions.
Keywords: flux problem, non-isothermal flows, creeping flows, mixed boundary conditions, weak solutions.
Received: June 15, 2019
Revised: July 14, 2019
Accepted: September 16, 2019
First online: October 14, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.958:531.32
MSC: 35Q35, 35Q79, 35A01
Language: Russian
Citation: A. A. Domnich, E. S. Baranovskii, M. A. Artemov, “On a mathematical model of non-isothermal creeping flows of a fluid through a given domain”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019), 417–429
Citation in format AMSBIB
\Bibitem{DomBarArt19}
\by A.~A.~Domnich, E.~S.~Baranovskii, M.~A.~Artemov
\paper On a mathematical model of non-isothermal creeping flows of a fluid through a given domain
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2019
\vol 23
\issue 3
\pages 417--429
\mathnet{http://mi.mathnet.ru/vsgtu1713}
\crossref{https://doi.org/10.14498/vsgtu1713}
\elib{https://elibrary.ru/item.asp?id=41801504}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1713
  • https://www.mathnet.ru/eng/vsgtu/v223/i3/p417
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:600
    Full-text PDF :286
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024