Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2019, Volume 23, Number 1, Pages 113–130
DOI: https://doi.org/10.14498/vsgtu1673
(Mi vsgtu1673)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Modeling, Numerical Methods and Software Complexes

A dual active set algorithm for optimal sparse convex regression

A. A. Gudkov, S. V. Mironov, S. P. Sidorov, S. V. Tyshkevich

N. G. Chernyshevsky Saratov State University (National Research University), Saratov, 410012, Russian Federation
Full-text PDF (753 kB) Citations (2)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The shape-constrained problems in statistics have attracted much attention in recent decades. One of them is the task of finding the best fitting monotone regression. The problem of constructing monotone regression (also called isotonic regression) is to find best fitted non-decreasing vector to a given vector. Convex regression is the extension of monotone regression to the case of $2$-monotonicity (or convexity). Both isotone and convex regression have applications in many fields, including the non-parametric mathematical statistics and the empirical data smoothing. The paper proposes an iterative algorithm for constructing a sparse convex regression, i.e. for finding a convex vector $z\in \mathbb{R}^n$ with the lowest square error of approximation to a given vector $y\in \mathbb{R}^n$ (not necessarily convex). The problem can be rewritten in the form of a convex programming problem with linear constraints. Using the Karush–Kuhn–Tucker optimality conditions it is proved that optimal points should lie on a piecewise linear function. It is proved that the proposed dual active-set algorithm for convex regression has polynomial complexity and obtains the optimal solution (the Karush–Kuhn–Tucker conditions are fulfilled).
Keywords: dual active set algorithm, pool-adjacent-violators algorithm, isotonic regression, monotone regression, convex regression.
Funding agency Grant number
Russian Foundation for Basic Research 18-37-00060
This work was supported by the Russian Foundation for Basic Research (project no. 18–37–00060).
Received: January 22, 2019
Revised: March 2, 2019
Accepted: March 4, 2019
First online: March 5, 2019
Bibliographic databases:
Document Type: Article
UDC: 519.65, 519.25, 519.853
MSC: 90C20, 65K05, 62G08
Language: English
Citation: A. A. Gudkov, S. V. Mironov, S. P. Sidorov, S. V. Tyshkevich, “A dual active set algorithm for optimal sparse convex regression”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019), 113–130
Citation in format AMSBIB
\Bibitem{GudMirSid19}
\by A.~A.~Gudkov, S.~V.~Mironov, S.~P.~Sidorov, S.~V.~Tyshkevich
\paper A dual active set algorithm for optimal sparse convex regression
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2019
\vol 23
\issue 1
\pages 113--130
\mathnet{http://mi.mathnet.ru/vsgtu1673}
\crossref{https://doi.org/10.14498/vsgtu1673}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464249400007}
\elib{https://elibrary.ru/item.asp?id=37248564}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072716021}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1673
  • https://www.mathnet.ru/eng/vsgtu/v223/i1/p113
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:611
    Full-text PDF :387
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024