Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2019, Volume 23, Number 1, Pages 20–36
DOI: https://doi.org/10.14498/vsgtu1648
(Mi vsgtu1648)
 

Differential Equations and Mathematical Physics

Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance

A. N. Zarubin, E. V. Chaplygina

Orel State University named after I. S. Turgenev, Orel, 302026, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study the Tricomi problem for the functional-differential mixed-compound equation $LQu(x,y)=0$ in the class of twice continuously differentiable solutions. Here $L$ is a differential-difference operator of mixed parabolic-elliptic type with Riemann–Liouville fractional derivative and linear shift by $y$. The $Q$ operator includes multiple functional delays and advances $a_1(x)$ and $a_2(x)$ by $x$. The functional shifts $a_1(x)$ and $a_2(x)$ are the orientation preserving mutually inverse diffeomorphisms. The integration domain is $D=D^+\cup D^-\cup I$. The “parabolicity” domain $D^+$ is the set of $(x,y)$ such that $x_0<x<x_3$, $y>0$. The ellipticity domain is $D^-=D_0^-\cup D_1^-\cup D_2^-$, where $D_k^-$ is the set of $(x,y)$ such that $x_k<x<x_{k+1}$, $-\rho_k(x)<y<0$, and $\rho_k=\sqrt{a_1^k(x)(x_1-a_1^k(x))}$, $\rho_k(x)=\rho_0(a_1^k(x))$, $k=0, 1, 2$. A general solution to this Tricomi problem is found. The uniqueness and existence theorems are proved.
Keywords: mixed-compound equation, fractional derivative, difference operator, Tricomi problem.
Received: September 26, 2018
Revised: January 23, 2019
Accepted: January 27, 2019
First online: March 28, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.956.6
Language: Russian
Citation: A. N. Zarubin, E. V. Chaplygina, “Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019), 20–36
Citation in format AMSBIB
\Bibitem{ZarCha19}
\by A.~N.~Zarubin, E.~V.~Chaplygina
\paper Boundary value problem for mixed-compound equation with fractional derivative, functional delay and advance
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2019
\vol 23
\issue 1
\pages 20--36
\mathnet{http://mi.mathnet.ru/vsgtu1648}
\crossref{https://doi.org/10.14498/vsgtu1648}
\zmath{https://zbmath.org/?q=an:07097280}
\elib{https://elibrary.ru/item.asp?id=37248559}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1648
  • https://www.mathnet.ru/eng/vsgtu/v223/i1/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :273
    References:98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024