Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2018, Volume 22, Number 4, Pages 620–646
DOI: https://doi.org/10.14498/vsgtu1634
(Mi vsgtu1634)
 

This article is cited in 4 scientific papers (total in 4 papers)

Differential Equations and Mathematical Physics

Geometric solutions of the Riemann problem for the scalar conservation law

V. V. Palin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119234, Russian Federation
Full-text PDF (756 kB) Citations (4)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: For the Riemann problem
$$ \left\{
\begin{array}{l}u_t+(\Phi(u,x))_x=0,\\ u|_{t=0}=u_-+[u]\theta(x) \end{array}
\right. $$
a new definition of the solution is proposed. We associate a Hamiltonian system with initial conservation law, and define the geometric solution as the result of the action of the phase flow on the initial curve. In the second part of this paper, we construct the equalization procedure, which allows us to juxtapose a geometric solution with a unique entropy solution under the condition that $\Phi$ does not depend on $x$. If $\Phi$ depends on $x$, then the equalization procedure allows us to construct a generalized solution of the original Riemann problem.
Keywords: Riemann problem, conservation laws, associated Hamiltonian system.
Received: July 15, 2018
Revised: November 11, 2018
Accepted: November 12, 2018
First online: November 27, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.956.35
MSC: 35C99, 35D30, 35L65
Language: Russian
Citation: V. V. Palin, “Geometric solutions of the Riemann problem for the scalar conservation law”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018), 620–646
Citation in format AMSBIB
\Bibitem{Pal18}
\by V.~V.~Palin
\paper Geometric solutions of the Riemann problem for the scalar conservation law
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2018
\vol 22
\issue 4
\pages 620--646
\mathnet{http://mi.mathnet.ru/vsgtu1634}
\crossref{https://doi.org/10.14498/vsgtu1634}
\elib{https://elibrary.ru/item.asp?id=36681023}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1634
  • https://www.mathnet.ru/eng/vsgtu/v222/i4/p620
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :249
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024