Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2018, Volume 22, Number 2, Pages 254–268
DOI: https://doi.org/10.14498/vsgtu1597
(Mi vsgtu1597)
 

Differential Equations and Mathematical Physics

Integral necessary condition of optimality of the second order for control problems described by system of integro-differential equations with delay

M. J. Mardanova, K. B. Mansimovbc, N. H. Abdullayevac

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, AZ1141, Azerbaijan
b Baku State University, Baku, AZ1148, Azerbaijan
c Institute of Control Systems, National Academy of Sciences of Azerbaijan, Baku, AZ1141, Azerbaijan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider the optimal control problem that is described by the system of integro-differential equations of the Volterra type with delay and multipoint performance criterion. The first and the second variations of the performance criterion are calculated under the hypothesis that the control domain is open. The necessary condition of the first order optimality in the form analogous to the Euler equations is deduced from the equality of the first variation of performance criterion and zero along the optimal process. Next, the implicit necessary condition of the second order optimality is obtained, which helps to establish rather general but constructively verified necessary condition for the second order optimality. The obtained results are applicable for constructing easy-verifying necessary conditions of optimality for the singular (in the usual sense) controls.
Keywords: integro-differential equation of Volterra type, optimal equation, necessary optimality condition in integral form, analog of Euler's equation, classical extreme, necessary second-order optimality condition.
Received: December 27, 2017
Revised: April 14, 2018
Accepted: June 11, 2018
First online: July 1, 2018
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
Language: Russian
Citation: M. J. Mardanov, K. B. Mansimov, N. H. Abdullayeva, “Integral necessary condition of optimality of the second order for control problems described by system of integro-differential equations with delay”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018), 254–268
Citation in format AMSBIB
\Bibitem{MarManAbd18}
\by M.~J.~Mardanov, K.~B.~Mansimov, N.~H.~Abdullayeva
\paper Integral necessary condition of optimality of the second order for control problems
described by system of~integro-differential equations with delay
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2018
\vol 22
\issue 2
\pages 254--268
\mathnet{http://mi.mathnet.ru/vsgtu1597}
\crossref{https://doi.org/10.14498/vsgtu1597}
\zmath{https://zbmath.org/?q=an:07038285}
\elib{https://elibrary.ru/item.asp?id=35467730}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1597
  • https://www.mathnet.ru/eng/vsgtu/v222/i2/p254
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025