Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2016, Volume 20, Number 2, Pages 259–275
DOI: https://doi.org/10.14498/vsgtu1487
(Mi vsgtu1487)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differential Equations and Mathematical Physics

On one nonlocal problem for the Euler–Darboux equation

M. V. Dolgopolov, I. N. Rodionova, V. M. Dolgopolov

Samara National Research University, Samara, 443086, Russian Federation
Full-text PDF (870 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The boundary value problem with displacement is determined for the generalized Euler–Darboux equation in the field representing the first quadrant. This problem, unlike previous productions, specifies two conditions, connect integrals and fractional derivatives from the values of the sought solution in the boundary points. On the line of singularity of the coefficients of the equations the matching conditions continuous with respect to the solution and its normal derivation are considered. The authors took for the basis of solving the earlier obtained by themselves the Cauchy problem solution of the special class due to the integral representations of one of the specified functions acquired simple form both for positive and for negative values of Euler–Darboux equation parameter. The nonlocal problem set by the authors is reduced to the system of Volterra integral equations with unpacked operators, the only solution which is given explicitly in the corresponding class of functions. From the above the uniqueness of the solution of nonlocal problem follows. The existence is proved by the direct verification. This reasoning allowed us to obtain the solution of nonlocal problem in the explicit form both for the positive and for the negative values of Euler–Darboux equation parameter.
Keywords: integral equations system, boundary value problem, partial differential equation.
Original article submitted 20/III/2016
revision submitted – 18/V/2016
Bibliographic databases:
Document Type: Article
UDC: 517.956.3
MSC: 35L10, 35Q05
Language: Russian
Citation: M. V. Dolgopolov, I. N. Rodionova, V. M. Dolgopolov, “On one nonlocal problem for the Euler–Darboux equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 259–275
Citation in format AMSBIB
\Bibitem{DolRodDol16}
\by M.~V.~Dolgopolov, I.~N.~Rodionova, V.~M.~Dolgopolov
\paper On one nonlocal problem for the Euler--Darboux equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 2
\pages 259--275
\mathnet{http://mi.mathnet.ru/vsgtu1487}
\crossref{https://doi.org/10.14498/vsgtu1487}
\zmath{https://zbmath.org/?q=an:06964486}
\elib{https://elibrary.ru/item.asp?id=27126230}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1487
  • https://www.mathnet.ru/eng/vsgtu/v220/i2/p259
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:707
    Full-text PDF :247
    References:75
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024