Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2016, Volume 20, Number 2, Pages 220–240
DOI: https://doi.org/10.14498/vsgtu1485
(Mi vsgtu1485)
 

This article is cited in 7 scientific papers (total in 7 papers)

Differential Equations and Mathematical Physics

A non-local problem for a loaded mixed-type equation with a integral operator

O. Kh. Abdullayev

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, 100125, Uzbekistan
Full-text PDF (956 kB) Citations (7)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study the existence and uniqueness of the solution of non-local boundary value problem for the loaded elliptic-hyperbolic equation
$$ u_{xx} + \mathop{\mathrm{sgn}} (y) u_{yy} + \frac{1 - \mathop{\mathrm{sgn}} (y)}{2} \sum\limits_{k = 1}^n {R_k}(x, u(x, 0)) = 0 $$
with integral operator
$$ {R_k}\bigl(x, u(x, 0)\bigr) = \left\{
\begin{array}{lc} {p_k}(x)D_{x\,\,1}^{ - {\alpha _k}}u(x, 0), & q \le x \le 1,\\[2mm] {r_k}(x)D_{ - 1\,x}^{ - {\beta _k}}u(x, 0), & - 1 \le x \le - q, \end{array}
\right. $$
where
$$
\begin{array}{l} \displaystyle D_{ax}^{ - {\alpha _k}}f(x) = \frac{1}{{\Gamma ({\alpha _k})}} \int _a^x \frac{f(t)}{(x - t)^{1-{\alpha _k} }}dt, \\ \displaystyle D_{xb}^{ - {\beta _k}}f(x) = \frac{1}{{\Gamma ({\beta _k})}} \int _x^b \frac{f(t)}{(t - x)^{1-{\beta _k}}}dt , \end{array}
$$
in double-connected domain $\Omega $, bounded with two lines:
$$ \sigma _1:~x^2 + y^2 = 1,\quad \sigma _2:~ x^2 + y^2 = q^2 \quad \text{at $y > 0$,}$$
and characteristics:
$$ A_j C_1:~ x + ( - 1)^j y = ( - 1)^{j + 1},\quad B_j C_2:~x + ( - 1)^j y = ( - 1)^{j + 1} \cdot q$$
of the considered equation at $y < 0$, where $0 < q < 1$, $j = 1, 2$; $A_1 ( 1; 0)$, $A_2( - 1; 0)$, $B_1(q; 0)$, $B_2( - q; 0)$, $C_1(0; - 1)$, $C_2(0; - q)$, $\beta _k$, $\alpha _k > 0$.
Uniqueness of the solution of investigated problem was proved by an extremum principle for the mixed type equations. Thus we need to prove that, the loaded part of the equation is identically equal to zero if considerate problem is homogeneous. Existence of the solution of the problem was proved by a method of the integral equations, thus the theory of the singular integral equations and Fredholm integral equations of the second kind were widely used.
Keywords: loaded equation, integral operator, elliptic-hyperbolic type equations, double-connected domain, existence and uniqueness of solution, extremum principle, integral equations.
Original article submitted 10/III/2016
revision submitted – 25/IV/2016
Bibliographic databases:
Document Type: Article
UDC: 517.956.6
MSC: 35M10
Language: Russian
Citation: O. Kh. Abdullayev, “A non-local problem for a loaded mixed-type equation with a integral operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 220–240
Citation in format AMSBIB
\Bibitem{Abd16}
\by O.~Kh.~Abdullayev
\paper A non-local problem for a loaded mixed-type equation with a integral operator
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 2
\pages 220--240
\mathnet{http://mi.mathnet.ru/vsgtu1485}
\crossref{https://doi.org/10.14498/vsgtu1485}
\zmath{https://zbmath.org/?q=an:06964483}
\elib{https://elibrary.ru/item.asp?id=27126221}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1485
  • https://www.mathnet.ru/eng/vsgtu/v220/i2/p220
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:605
    Full-text PDF :292
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024