Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2016, Volume 20, Number 3, Pages 567–577
DOI: https://doi.org/10.14498/vsgtu1483
(Mi vsgtu1483)
 

This article is cited in 6 scientific papers (total in 6 papers)

Mathematical Modeling, Numerical Methods and Software Complexes

Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border

S. S. Vlasovaa, E. Yu. Prosviryakovb

a Kazan National Research Technical University named after A. N. Tupolev, Kazan, 420111, Russian Federation
b Institute of Engineering Science, Urals Branch, Russian Academy of Sciences, Ekaterinburg, 620049, Russian Federation
Full-text PDF (860 kB) Citations (6)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The exact stationary solution of the boundary-value problem that describes the convective motion of an incompressible viscous fluid in the two-dimensional layer with the square heating of a free surface in Stokes's approach is found. The linearization of the Oberbeck–Boussinesq equations allows one to describe the flow of fluid in extreme points of pressure and temperature. The condition under which the counter-current flows (two counter flows) in the fluid can be observed, is introduced. If the stagnant point in the fluid exists, six non-closed whirlwinds can be observed.
Keywords: exact solution, Newton–Rikhmann law, thermal convection, Oberbeck–Boussinesq equations, counter-current flow.
Funding agency Grant number
Foundation for Assistance to Small Innovative Enterprises in Science and Technology 8389 ГУ2/2015
This work was supported by the Foundation for Assistance to Small Innovative Enterprises in Science and Technology (the UMNIK program); the agreement no. 8389 GU2/2015.
Original article submitted 13/III/2016
revision submitted – 25/V/2016
Bibliographic databases:
Document Type: Article
UDC: 532.51
Language: English
Citation: S. S. Vlasova, E. Yu. Prosviryakov, “Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 567–577
Citation in format AMSBIB
\Bibitem{VlaPro16}
\by S.~S.~Vlasova, E.~Yu.~Prosviryakov
\paper Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 3
\pages 567--577
\mathnet{http://mi.mathnet.ru/vsgtu1483}
\crossref{https://doi.org/10.14498/vsgtu1483}
\zmath{https://zbmath.org/?q=an:06964527}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454026500011}
\elib{https://elibrary.ru/item.asp?id=28282250}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1483
  • https://www.mathnet.ru/eng/vsgtu/v220/i3/p567
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:540
    Full-text PDF :251
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024