Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2016, Volume 20, Number 1, Pages 54–64
DOI: https://doi.org/10.14498/vsgtu1463
(Mi vsgtu1463)
 

This article is cited in 5 scientific papers (total in 5 papers)

Differential Equations and Mathematical Physics

On optimal control problem for the heat equation with integral boundary condition

R. K. Tagiyeva, V. M. Gabibovb

a Baku State University, Baku, AZ-1148, Azerbaijan
b Lankaran State University, Lankaran, AZ-4200, Azerbaijan
Full-text PDF (687 kB) Citations (5)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In this paper we consider the optimal control problem for the heat equation with an integral boundary condition. Control functions are the free term and the coefficient of the equation of state and the free term of the integral boundary condition. The coefficients and the constant term of the equation of state are elements of a Lebesgue space and the free term of the integral condition is an element of Sobolev space. The functional goal is the final. The questions of correct setting of optimal control problem in the weak topology of controls space are studied. We prove that in this problem there exist at least one optimal control. The set of optimal controls is weakly compact in the space of controls and any minimizing sequence of controls of a functional of goal converges weakly to the set of optimal controls. There is proved Frechet differentiability of the functional of purpose on the set of admissible controls. The formulas for the differential of the gradient of the purpose functional are obtained. The necessary optimality condition is established in the form of variational inequality.
Keywords: optimal control, heat equation, necessary optimality condition.
Original article submitted 22/XI/2015
revision submitted – 22/I/2016
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49J20, 35K20
Language: Russian
Citation: R. K. Tagiyev, V. M. Gabibov, “On optimal control problem for the heat equation with integral boundary condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 54–64
Citation in format AMSBIB
\Bibitem{TagGab16}
\by R.~K.~Tagiyev, V.~M.~Gabibov
\paper On optimal control problem for the heat equation with integral boundary condition
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2016
\vol 20
\issue 1
\pages 54--64
\mathnet{http://mi.mathnet.ru/vsgtu1463}
\crossref{https://doi.org/10.14498/vsgtu1463}
\zmath{https://zbmath.org/?q=an:06964472}
\elib{https://elibrary.ru/item.asp?id=26898088}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1463
  • https://www.mathnet.ru/eng/vsgtu/v220/i1/p54
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:613
    Full-text PDF :356
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024