Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 4, Pages 658–666
DOI: https://doi.org/10.14498/vsgtu1444
(Mi vsgtu1444)
 

This article is cited in 11 scientific papers (total in 11 papers)

Differential Equations and Mathematical Physics

On the uniqueness of kernel determination in the integro-differential equation of parabolic type

D. K. Durdiev

Bukhara State University, Bukhara, 200100, Uzbekistan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study the problem of determining the kernel of the integral term in the one-dimensional integro-differential equation of heat conduction from the known solution of the Cauchy problem for this equation. First, the original problem is replaced by the equivalent problem where an additional condition contains the unknown kernel without integral. We study the question of the uniqueness of the determining of the kernel. Next, assuming that there are two solutions $ k_1 (x, t) $ and $ k_2 (x, t), $ integro-differential equations, Cauchy and additional conditions for the difference of solutions of the Cauchy problem corresponding to the functions $ k_1 (x, t), $ $ k_2 (x, t)$ are obtained. Further research is being conducted for the difference $k_1 (x, t) - k_2 (x, t) $ of solutions of the problem and using the techniques of integral equations estimates it is shown that if the unknown kernel $ k (x, t) $ can be represented as $ k_j (x, t) = \sum_ {i = 0} ^ N a_i (x) b_i (t)$, $ j = 1, 2, $ then $ k_1 (x, t ) \equiv k_2 (x, t). $ Thus, the theorem on the uniqueness of the solution of the problem is proved.
Keywords: inverse problem, parabolic equation, Cauchy problem, integral equation, uniqueness.
Original article submitted 21/VII/2015
revision submitted – 17/XI/2015
Bibliographic databases:
Document Type: Article
UDC: 517.956.47
MSC: 45Q05, 45K05
Language: Russian
Citation: D. K. Durdiev, “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 658–666
Citation in format AMSBIB
\Bibitem{Dur15}
\by D.~K.~Durdiev
\paper On the uniqueness of kernel determination in the integro-differential equation of parabolic type
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 4
\pages 658--666
\mathnet{http://mi.mathnet.ru/vsgtu1444}
\crossref{https://doi.org/10.14498/vsgtu1444}
\zmath{https://zbmath.org/?q=an:06969185}
\elib{https://elibrary.ru/item.asp?id=25687494}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1444
  • https://www.mathnet.ru/eng/vsgtu/v219/i4/p658
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:623
    Full-text PDF :286
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024