Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 4, Pages 603–612
DOI: https://doi.org/10.14498/vsgtu1424
(Mi vsgtu1424)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

Boundary value problems for matrix Euler–Poisson–Darboux equation with data on a characteristic

A. A. Andreev, E. A. Maksimova

Samara State Technical University, Samara, 443100, Russian Federation
Full-text PDF (712 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider the system of $n$ partial differential equations in matrix notation (the system of Euler–Poisson–Darboux equations). For the system we formulate the Cauchy–Goursat and Darboux problems for the case when the eigenvalues of the coefficient matrix lie in $(0; 1/2)$. The coefficient matrix is reduced to the Jordan form, which allows to separate the system to the $r$ independent systems, one for each Jordan cell. The coefficient matrix in the obtained systems has the only one eigenvalue in the considered interval. For a system of equations having the only coefficient matrix in form of Jordan cell, which is the diagonal or triangular matrix, we can construct the solution using the properties of matrix functions. We form the Riemann–Hadamard matrices for each of $r$ systems using the Riemann matrix for the considered system, constructed before. That allow to find out the solutions of the Cauchy–Goursat and Darboux problems for each system of matrix partial differential equations. The solutions of the original problems are represented in form of the direct sum of the solutions of systems for Jordan cells. The correctness theorem for the obtained solutions is formulated.
Keywords: Riemann method, Cauchy–Goursat problem, Darboux problem, partial differential equations, system of Euler–Poisson–Darboux equations.
Original article submitted 17/III/2015
revision submitted – 18/VI/2015
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35L52
Language: Russian
Citation: A. A. Andreev, E. A. Maksimova, “Boundary value problems for matrix Euler–Poisson–Darboux equation with data on a characteristic”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 603–612
Citation in format AMSBIB
\Bibitem{AndMak15}
\by A.~A.~Andreev, E.~A.~Maksimova
\paper Boundary value problems for matrix Euler--Poisson--Darboux equation with data on~a~characteristic
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 4
\pages 603--612
\mathnet{http://mi.mathnet.ru/vsgtu1424}
\crossref{https://doi.org/10.14498/vsgtu1424}
\zmath{https://zbmath.org/?q=an:06969180}
\elib{https://elibrary.ru/item.asp?id=25687489}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1424
  • https://www.mathnet.ru/eng/vsgtu/v219/i4/p603
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024