Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 4, Pages 680–696
DOI: https://doi.org/10.14498/vsgtu1382
(Mi vsgtu1382)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differential Equations and Mathematical Physics

On a class of vector fields

G. G. Islamov

Udmurt State University, Izhevsk, 426034, Russian Federation
Full-text PDF (785 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: It is shown that a simple postulate “The displacement field of the vacuum is a normalized electric field”, is equivalent to three parametric representation of the displacement field of the vacuum:
$$ u(x;t) = P(x) \cos k(x)t + Q(x) \sin k(x)t. $$
Here $t$ — time; $k(x)$ — frequency vibrations at the point of three-dimensional Euclidean space; $P(x), Q(x)$ — a pair of stationary orthonormal vector fields; $(k,P, Q)$ — parameter list of the displacement field. In this case, the normalization factor has dimension $T^{-2}$. The speed of the displacement field
$$ v(x;t) = \frac{\partial u(x;t)}{\partial t} = k(x)(Q(x) \cos k(x)t - P(x) \sin k(x)t). $$
The electric field corresponding to this distribution of the displacement field of vacuum, is given by the formula
$$ E(x;t) = -\frac{\partial v(x;t)}{\partial t} = k^2(x)u(x;t). $$
Moreover, the magnetic induction
$$ B(x;t) = \mathop{\mathrm{rot }} v(x; t). $$
These constructions are used in the determination of local and global solutions of Maxwell's equations describing the dynamics of electromagnetic fields.
Keywords: local and global solutions of Maxwell's equations, spectral problem for rotor operator, the small flow of the displacement field.
Original article submitted 19/XII/2014
revision submitted – 19/II/2015
Bibliographic databases:
Document Type: Article
UDC: 517.958:[535+537.812]
MSC: 78A25, 83C50
Language: Russian
Citation: G. G. Islamov, “On a class of vector fields”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 680–696
Citation in format AMSBIB
\Bibitem{Isl15}
\by G.~G.~Islamov
\paper On a class of vector fields
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 4
\pages 680--696
\mathnet{http://mi.mathnet.ru/vsgtu1382}
\crossref{https://doi.org/10.14498/vsgtu1382}
\zmath{https://zbmath.org/?q=an:06969187}
\elib{https://elibrary.ru/item.asp?id=25687496}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1382
  • https://www.mathnet.ru/eng/vsgtu/v219/i4/p680
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:525
    Full-text PDF :259
    References:58
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024