Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 2, Pages 205–220
DOI: https://doi.org/10.14498/vsgtu1377
(Mi vsgtu1377)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

Entanglement of two qubits interacting with one-mode quantum field

E. K. Bashkirov, M. S. Mastyugin

Samara State University, Samara, 443011, Russian Federation
Full-text PDF (924 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In the present paper we investigate the dynamics of the system of two two-level natural or artificial atoms, in which only one atom couples to a thermal one-mode field in finite-Q cavity, since one of them can move around the cavity. For the description of the dynamics of the system we find the eigenvalues and eigenfunctions of a Hamiltonian of the system. With their help we derive the exact expression for a density matrix of the system in case of a pure initial state of atoms and a thermal state of a field. The reduced atomic density matrix is found. The one-qubit transposing of an atomic density matrix is carried out. With its help the Peres–Horodecki criterium is calculated. Numerical calculations of entanglement parameter is done for different initial pure states of atoms and mean photon numbers in a thermal mode. It is found that the thermal field can induce a high degree of qubits entanglement in considered model. Thus we have derived that one can use the strength of dipole-dipole interaction and cavity temperature for entanglement control in the considered system. It is shown also that the maximum degree of entanglement is reached for one-atom excited state.
Keywords: entanglement, qubit, thermal noise, dipole-dipole interaction, Peres–Horodecki criterium.
Original article submitted 17/XII/2014
revision submitted – 14/II/2015
Bibliographic databases:
Document Type: Article
UDC: 517.958:535.14
MSC: 81V80, 81P45
Language: Russian
Citation: E. K. Bashkirov, M. S. Mastyugin, “Entanglement of two qubits interacting with one-mode quantum field”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 205–220
Citation in format AMSBIB
\Bibitem{BasMas15}
\by E.~K.~Bashkirov, M.~S.~Mastyugin
\paper Entanglement of two qubits interacting with one-mode quantum field
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 205--220
\mathnet{http://mi.mathnet.ru/vsgtu1377}
\crossref{https://doi.org/10.14498/vsgtu1377}
\zmath{https://zbmath.org/?q=an:06968957}
\elib{https://elibrary.ru/item.asp?id=24078297}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1377
  • https://www.mathnet.ru/eng/vsgtu/v219/i2/p205
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :250
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024