Abstract:
We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane D, D={z:Rez<α,α>0}. Let ψ(z)∈H(D); μ1, μ2, …∈D be the positive zero points of this function and let the boundary of domain D contain their limit. Also, we assume that μk is of sk multiplicity, k=1,2,…. Let us set Mφ an operator of convolution with the characteristic function φ(z). Taking an arbitrary sequence akj,j=0,1,…,sk−1 we should ask: is there a function
u(z)∈KerMφ that provides the relation u(j)(μk)=akj,j=0,1,…,sk−1? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
Keywords:
convolution operator, de la Vallee Poussin problem, multiple interpolation, the half-plane.
Citation:
V. V. Napalkov, K. Zimens, “De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 283–292
\Bibitem{NapZim15}
\by V.~V.~Napalkov, K.~Zimens
\paper De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 283--292
\mathnet{http://mi.mathnet.ru/vsgtu1355}
\crossref{https://doi.org/10.14498/vsgtu1355}
\zmath{https://zbmath.org/?q=an:06968962}
\elib{https://elibrary.ru/item.asp?id=24078305}
Linking options:
https://www.mathnet.ru/eng/vsgtu1355
https://www.mathnet.ru/eng/vsgtu/v219/i2/p283
This publication is cited in the following 1 articles:
S. G. Merzlyakov, “Interpolation by Generalized Exponential Series”, Math. Notes, 109:1 (2021), 94–101