Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 2, Pages 283–292
DOI: https://doi.org/10.14498/vsgtu1355
(Mi vsgtu1355)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differential Equations and Mathematical Physics

De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane

V. V. Napalkova, K. Zimensb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, 450008, Russian Federation
b Ufa State Aviation Technical University, Ufa, 450000, Russian Federation
Full-text PDF (768 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z<\alpha,$ $ \alpha>0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
Keywords: convolution operator, de la Vallee Poussin problem, multiple interpolation, the half-plane.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00720-а
This work has been supported by the Russian Foundation for Basic Research (project no. 14–01–00720-a).
Original article submitted 21/XI/2014
revision submitted – 15/II/2015
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. V. Napalkov, K. Zimens, “De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 283–292
Citation in format AMSBIB
\Bibitem{NapZim15}
\by V.~V.~Napalkov, K.~Zimens
\paper De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 283--292
\mathnet{http://mi.mathnet.ru/vsgtu1355}
\crossref{https://doi.org/10.14498/vsgtu1355}
\zmath{https://zbmath.org/?q=an:06968962}
\elib{https://elibrary.ru/item.asp?id=24078305}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1355
  • https://www.mathnet.ru/eng/vsgtu/v219/i2/p283
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:633
    Full-text PDF :238
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024