|
This article is cited in 1 scientific paper (total in 1 paper)
Differential Equations and Mathematical Physics
De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
V. V. Napalkova, K. Zimensb a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, 450008, Russian Federation
b Ufa State Aviation Technical University, Ufa, 450000, Russian Federation
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z<\alpha,$ $ \alpha>0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$, $\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function
$u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
Keywords:
convolution operator, de la Vallee Poussin problem, multiple interpolation, the half-plane.
Original article submitted 21/XI/2014 revision submitted – 15/II/2015
Citation:
V. V. Napalkov, K. Zimens, “De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 283–292
Linking options:
https://www.mathnet.ru/eng/vsgtu1355 https://www.mathnet.ru/eng/vsgtu/v219/i2/p283
|
Statistics & downloads: |
Abstract page: | 633 | Full-text PDF : | 238 | References: | 69 |
|