Abstract:
We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z<\alpha,$$ \alpha>0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$, $\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$$j=0, 1, \ldots, s_k-1$ we should ask: is there a function
$u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$$j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
Keywords:
convolution operator, de la Vallee Poussin problem, multiple interpolation, the half-plane.
Citation:
V. V. Napalkov, K. Zimens, “De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 283–292
\Bibitem{NapZim15}
\by V.~V.~Napalkov, K.~Zimens
\paper De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 283--292
\mathnet{http://mi.mathnet.ru/vsgtu1355}
\crossref{https://doi.org/10.14498/vsgtu1355}
\zmath{https://zbmath.org/?q=an:06968962}
\elib{https://elibrary.ru/item.asp?id=24078305}
Linking options:
https://www.mathnet.ru/eng/vsgtu1355
https://www.mathnet.ru/eng/vsgtu/v219/i2/p283
This publication is cited in the following 1 articles: