Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 4(37), Pages 170–177
DOI: https://doi.org/10.14498/vsgtu1352
(Mi vsgtu1352)
 

This article is cited in 3 scientific papers (total in 3 papers)

Theoretical Physics

Complex time transformation pecularities for wave function collapse description using quntum path integrals

N. V. Meleshko, A. Yu. Samarin

Samara State Technical University, Samara, 443100, Russian Federation
Full-text PDF (626 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: A quantum path integral was transformed into the real form using a complex representation of the time. Such procedure gives the possibility to specify measures for the sets of the virtual paths in continual integrals determining amplitudes of quantum states transitions. The transition amplitude is a real function of the complex time modulus. Negative time values correspond to the reverse sequence of events. The quantum evolution description in form of the virtual paths mechanical motion does not depend on the sign of the time, due to the reversibility of the classical mechanics laws. This allows to consider the negative half of the imaginary axis of the time for the path integral measure determination. In this case this integral has the form of Wiener's integral having the well-known measure. As the wave function collapse is irreversible effect, the causal chain of events cannot be changed. Thus, to describe the collapse the transformation of quantum path integrals have to be performed in upper half plane of the complex time. It is shown that the Wiener measure for the real continual integral can be continued analytically on this actual range of the complex time. This allows to use the quantum path integral for any actual range of the complex time.
Keywords: wave function collapse, path integral, Wiener measure, complex time, Wick rotation.
Original article submitted 13/XI/2014
revision submitted – 26/XI/2014
Bibliographic databases:
Document Type: Article
UDC: 53.03:(539.183-539.194)
MSC: 81S40, 58D30
Language: Russian
Citation: N. V. Meleshko, A. Yu. Samarin, “Complex time transformation pecularities for wave function collapse description using quntum path integrals”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014), 170–177
Citation in format AMSBIB
\Bibitem{MelSam14}
\by N.~V.~Meleshko, A.~Yu.~Samarin
\paper Complex time transformation pecularities for wave function collapse description using quntum path integrals
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 4(37)
\pages 170--177
\mathnet{http://mi.mathnet.ru/vsgtu1352}
\crossref{https://doi.org/10.14498/vsgtu1352}
\zmath{https://zbmath.org/?q=an:06968942}
\elib{https://elibrary.ru/item.asp?id=23464561}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1352
  • https://www.mathnet.ru/eng/vsgtu/v137/p170
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :226
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024