Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 3, Pages 523–533
DOI: https://doi.org/10.14498/vsgtu1351
(Mi vsgtu1351)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical Modeling, Numerical Methods and Software Complexes

Solution of 3D heat conduction equations using the discontinuous Galerkin method on unstructured grids

R. V. Zhalnina, M. E. Ladonkinab, V. F. Masyagina, V. F. Tishkinb

a Ogarev Mordovia State University, Saransk, 430005, Russian Federation
b M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences, Moscow, 125047, Russian Federation
Full-text PDF (763 kB) Citations (5)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The discontinuous Galerkin method with discontinuous basic functions which is characterized by a high order of accuracy of the obtained solution is now widely used. In this paper a new way of approximation of diffusion terms for discontinuous Galerkin method for solving diffusion-type equations is proposed. The method uses piecewise polynomials that are continuous on a macroelement surrounding the nodes in the unstructured mesh but discontinuous between the macroelements. In the proposed numerical scheme the spaced grid is used. On one grid an approximation of the unknown quantity is considered, on the other is the approximation of additional variables. Additional variables are components of the heat flux. For the numerical experiment the initial-boundary problem for three-dimensional heat conduction equation is chosen. Calculations of three-dimensional modeling problems including explosive factors show a good accuracy of offered method.
Keywords: parabolic equations, spaced grids, discontinuous Galerkin method, convergence and accuracy of the method.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-31260-мол-a
This work has been supported by the Russian Foundation for Basic Research (project no. 14–01–31260-mol-a).
Original article submitted 05/XI/2014
revision submitted – 23/III/2015
Bibliographic databases:
Document Type: Article
UDC: 517.958:536.24
MSC: 58J35, 65M08
Language: Russian
Citation: R. V. Zhalnin, M. E. Ladonkina, V. F. Masyagin, V. F. Tishkin, “Solution of 3D heat conduction equations using the discontinuous Galerkin method on unstructured grids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:3 (2015), 523–533
Citation in format AMSBIB
\Bibitem{ZhaLadMas15}
\by R.~V.~Zhalnin, M.~E.~Ladonkina, V.~F.~Masyagin, V.~F.~Tishkin
\paper Solution of 3D heat conduction equations using the discontinuous Galerkin method on unstructured grids
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 3
\pages 523--533
\mathnet{http://mi.mathnet.ru/vsgtu1351}
\crossref{https://doi.org/10.14498/vsgtu1351}
\zmath{https://zbmath.org/?q=an:06968980}
\elib{https://elibrary.ru/item.asp?id=24554662}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1351
  • https://www.mathnet.ru/eng/vsgtu/v219/i3/p523
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:848
    Full-text PDF :382
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024