Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 2, Pages 382–397
DOI: https://doi.org/10.14498/vsgtu1330
(Mi vsgtu1330)
 

This article is cited in 6 scientific papers (total in 6 papers)

Mathematical Modeling, Numerical Methods and Software Complexes

Mathematical models of nonlinear longitudinal-cross oscillations of object with moving borders

V. N. Anisimov, V. L. Litvinov

Syzran' Branch of Samara State Technical University, Syzran’, Samara region, 446001, Russian Federation
Full-text PDF (767 kB) Citations (6)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The nonlinear formulation of problems for describing longitudinal-cross oscillations of objects with moving borders is noted. These mathematical models consist of a system of two nonlinear partial differential equations with the higher time derivative of the second order and the fourth-order by the spatial variable. The nonlinear boundary conditions on moving boundary have a higher time derivative of the second order and the third-order by the spatial variable. The geometric nonlinearity, visco-elasticity, the flexural stiffness of the oscillating object and the elasticity of the substrate of object are taken into account. Boundary conditions in the case of energy exchange between the parts of the object on the left and right of the moving boundary are given. The moving boundary has got a joined mass. The elastic nature of borders joining is considered. The longitudinal-cross oscillations of objects with moving borders of high intensity can be described by the resulting differential model. The Hamilton's variational principle is used in the formulation of the problem.
Keywords: longitudinal-cross oscillations, moving borders, boundary value problems, mathematical models, boundary conditions, nonlinear system of partial differential equations, variational principles.
Original article submitted 05/IX/2014
revision submitted – 18/II/2015
Bibliographic databases:
Document Type: Article
UDC: 517.958:531.12; 534.11
MSC: Primary 35R37; Secondary 35G30, 35Q70
Language: Russian
Citation: V. N. Anisimov, V. L. Litvinov, “Mathematical models of nonlinear longitudinal-cross oscillations of object with moving borders”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 382–397
Citation in format AMSBIB
\Bibitem{AniLit15}
\by V.~N.~Anisimov, V.~L.~Litvinov
\paper Mathematical models of~nonlinear longitudinal-cross oscillations of~object with~moving borders
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 382--397
\mathnet{http://mi.mathnet.ru/vsgtu1330}
\crossref{https://doi.org/10.14498/vsgtu1330}
\zmath{https://zbmath.org/?q=an:06968968}
\elib{https://elibrary.ru/item.asp?id=24078316}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1330
  • https://www.mathnet.ru/eng/vsgtu/v219/i2/p382
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:764
    Full-text PDF :252
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024