Abstract:
The general solution of a problem of the limit behavior and dynamic bend is obtained for the perfect rigid-plastic circular plates, hinge supported on immobile polygonal contour, located inside the plate. The plate is subjected to short-term dynamic load of explosive type with high intensity, uniformly distributed over the surface. It is shown that there are several mechanisms of limit and dynamic deformation of plates depending on the location of the support contour. The simple analytic expressions are obtained for the limit load and maximum final deflection of plates. The optimal location of support and the number of sides of the polygonal contour are determined, at which the plate has maximum limit load. Numerical examples are given.
Keywords:
rigid-plastic plate, circular plate, internal polygonal support, explosive load, limit load, final deflection, optimal location of support.
Citation:
T. P. Romanova, “The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014), 94–105
\Bibitem{Rom14}
\by T.~P.~Romanova
\paper The Optimal Location of the Polygonal Internal Supports to the Circular Rigid-Plastic Plates
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 3(36)
\pages 94--105
\mathnet{http://mi.mathnet.ru/vsgtu1312}
\crossref{https://doi.org/10.14498/vsgtu1312}
\zmath{https://zbmath.org/?q=an:06968920}
\elib{https://elibrary.ru/item.asp?id=23085714}
Linking options:
https://www.mathnet.ru/eng/vsgtu1312
https://www.mathnet.ru/eng/vsgtu/v136/p94
This publication is cited in the following 4 articles:
E. A. Efimenko, “Optimisation of Supports' Position for a Reinforced Concrete Slab of Arbitrary Geometry”, jour, 3:1 (2024), 15
T. P. Romanova, “Predelnyi analiz i optimalnoe opiranie trekhsloinykh armirovannykh kruglykh plastin
iz raznosoprotivlyayuschikhsya materialov pri neravnomernom nagruzhenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:3 (2016), 508–523
T. P. Romanova, “Carrying capacity and optimization of three-layer reinforced concrete annular plate, supported on the internal contour”, PNRPU Mechanics Bulletin, 2015, no. 3, 114–132 (In Russian)
T. P. Romanova, “Nesuschaya sposobnost i optimizatsiya trekhsloinykh armirovannykh kruglykh plastin iz raznosoprotivlyayuschikhsya materialov, opertykh po vnutrennemu konturu”, Problemy prochnosti i plastichnosti, 2015, no. 3, 286–300http://www.unn.ru/e-library/ppp.html?anum=317