Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 2(35), Pages 16–21
DOI: https://doi.org/10.14498/vsgtu1294
(Mi vsgtu1294)
 

This article is cited in 2 scientific papers (total in 2 papers)

Differential Equations

On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems

O. V. Alexeeva, V. V. Kornienko, D. V. Kornienko

I. A. Bunin Elets State University, Elets, Lipetskaya obl., 399770, Russian Federation
Full-text PDF (590 kB) Citations (2)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We made the comparison study and characterize the spectral properties of differential operators induced by the Dirichlet problem for the hyperbolic system without the lowest terms of the form
$$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2} = \lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2} = \lambda{u^2}+ f^2, $$
and for the hyperbolic system with the lowest terms of the form
$$ \cfrac{\partial^2{u^1}}{\partial{t}^2}+\cfrac{\partial^2{u^2}}{\partial{x}^2}+\cfrac{\partial{u^2}}{\partial{x}} =\lambda{u^1}+f^1, \quad \cfrac{\partial^2{u^2}}{\partial{t}^2}+\cfrac{\partial^2{u^1}}{\partial{x}^2}+\cfrac{\partial{u^1}}{\partial{x}} = \lambda{u^2}+ f^2, $$
, which are considered in the closure $V_{t,x}$ of the bounded domain $\Omega_{t,x}=(0;\pi)^2$ in Euclidean space $\mathbb{R}^2_{t,x}.$ The spectral properties of the boundary value problems for the systems of linear differential equations of the hyperbolic type are investigated in the Hilbert space $\mathcal{H}_{t,x}$ in the terms of spectral closed operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x}$. We study the spectra of the closed differential operators $L:\mathcal{H}_{t,x}\to\mathcal{H}_{t,x},$ induced by the Dirichlet problem for the second order hyperbolic systems: $C\sigma{L}=R\sigma{L}$ — empty set; point spectrum $P\sigma{L}$ is in the real straight line of the complex plane $\mathbb{C}$. The operator $L$ eigen vector functions generate the orthogonal basis for the hyperbolic system without the lowest terms. For the hyperbolic system with the lowest terms the operator $L$ eigen vector functions generate the Riesz basis, nonorthogonal in the Hilbert space $\mathcal{H}_{t,x}.$ The theorems on the structure of the induced by the Dirichlet problem operator $L$ spectrum $\sigma L$ are formulated.
Keywords: hyperbolic systems, boundary value problems, closed operators, spectrum, basis, orthogonal basis, Riesz basis.
Original article submitted 13/XI/2013
revision submitted – 03/II/2014
Bibliographic databases:
Document Type: Article
UDC: 517.956.328
MSC: Primary 35P05; Secondary 35L52, 35P10
Language: Russian
Citation: O. V. Alexeeva, V. V. Kornienko, D. V. Kornienko, “On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014), 16–21
Citation in format AMSBIB
\Bibitem{AleKorKor14}
\by O.~V.~Alexeeva, V.~V.~Kornienko, D.~V.~Kornienko
\paper On the Lowest by $x$-variable Terms Influence on the Spectral Properties of Dirichlet Problem for the Hyperbolic Systems
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 2(35)
\pages 16--21
\mathnet{http://mi.mathnet.ru/vsgtu1294}
\crossref{https://doi.org/10.14498/vsgtu1294}
\zmath{https://zbmath.org/?q=an:06968871}
\elib{https://elibrary.ru/item.asp?id=22813973}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1294
  • https://www.mathnet.ru/eng/vsgtu/v135/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:488
    Full-text PDF :229
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024