Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 2(35), Pages 96–114
DOI: https://doi.org/10.14498/vsgtu1292
(Mi vsgtu1292)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mechanics of Solids

Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of the 3D Inhomogeneous Media

V. A. Petushkov

A. A. Blagonravov Mechanical Engineering Institute RAS, Moscow, 101990, Russian Federation
Full-text PDF (899 kB) Citations (2)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The method of boundary integral equations is applied for solving the nonlinear problems of thermo-elastic-plastic deformation and fracture of inhomogeneous 3D bodies of the complex form. Solution is constructed on the basis of the generalized identity of Somigliana involving method of sequential linearization in the form of initial plastic deformations. The increments of plastic deformation are determined on the basis of the flow theory of hardening elastoplastic media with the use of modifed Prandtl–Reus's relations. The cases of complex thermo mechanical loading of compound piecewise homogeneous media in contact are considered. For describing the processes of nonlinear deformation and fracture of the bodies with a complex geometry and local peculiarities a method of discrete domains (DDBIEM) is developed. The solutions of some practical significant 3D non-linear problems of the mechanics of deformation and fracture are presented.
Keywords: inhomogeneous 3D media, nonlinear deformation and fracture, boundary integral equation method, collocation approach, subdomains method.
Original article submitted 25/I/2014
revision submitted – 17/IV/2014
Bibliographic databases:
Document Type: Article
UDC: 539.42
MSC: 74S30, 74R20
Language: Russian
Citation: V. A. Petushkov, “Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of the 3D Inhomogeneous Media”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014), 96–114
Citation in format AMSBIB
\Bibitem{Pet14}
\by V.~A.~Petushkov
\paper Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of~the~3D~Inhomogeneous Media
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 2(35)
\pages 96--114
\mathnet{http://mi.mathnet.ru/vsgtu1292}
\crossref{https://doi.org/10.14498/vsgtu1292}
\zmath{https://zbmath.org/?q=an:06968879}
\elib{https://elibrary.ru/item.asp?id=22813981}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1292
  • https://www.mathnet.ru/eng/vsgtu/v135/p96
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :364
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024