Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 1(34), Pages 37–47
DOI: https://doi.org/10.14498/vsgtu1280
(Mi vsgtu1280)
 

This article is cited in 4 scientific papers (total in 4 papers)

Differential Equations

A Boundary-value Problem with Shift for a Hyperbolic Equation Degenerate in the Interior of a Region

O. A. Repinab, S. K. Kumykovac

a Samara State Technical University, Samara, 443100, Russian Federation
b Samara State Academy of Economics, Samara, 443090, Russian Federation
c Kabardino-Balkar State University, Nalchik, 360004, Russian Federation
Full-text PDF (617 kB) Citations (4)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: For a degenerate hyperbolic equation in characteristic region (lune) a boundary-value problem with operators of fractional integro-differentiation is studied. The solution of this equation on the characteristics is related point-to-point to the solution and its derivative on the degeneration line. The uniqueness theorem is proved by the modified Tricomi method with inequality-type constraints on the known functions. Question of the problem solution’s existence is reduced to the solvability of a singular integral equation with Cauchy kernel of the normal type.
Keywords: Cauchy problem, boundary-value problem with shift, fractional integro-differentiation operators, singular equation with Cauchy kernel, regularizer, Gauss hypergeometric function, Euler gamma function.
Original article submitted 04/XII/2013
revision submitted – 11/II/2014
Bibliographic databases:
Document Type: Article
UDC: 517.956.326
MSC: Primary 35L80; Secondary 35L20, 35C15
Language: Russian
Citation: O. A. Repin, S. K. Kumykova, “A Boundary-value Problem with Shift for a Hyperbolic Equation Degenerate in the Interior of a Region”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014), 37–47
Citation in format AMSBIB
\Bibitem{RepKum14}
\by O.~A.~Repin, S.~K.~Kumykova
\paper A~Boundary-value Problem with Shift for a~Hyperbolic Equation Degenerate in the Interior of a~Region
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 1(34)
\pages 37--47
\mathnet{http://mi.mathnet.ru/vsgtu1280}
\crossref{https://doi.org/10.14498/vsgtu1280}
\zmath{https://zbmath.org/?q=an:06968823}
\elib{https://elibrary.ru/item.asp?id=22813958}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1280
  • https://www.mathnet.ru/eng/vsgtu/v134/p37
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:516
    Full-text PDF :261
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024