Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 2(35), Pages 50–63
DOI: https://doi.org/10.14498/vsgtu1275
(Mi vsgtu1275)
 

This article is cited in 3 scientific papers (total in 3 papers)

Functional Analysis

Investigations of the Numerical Range of a Operator Matrix

T. H. Rasulov, E. B. Dilmurodov

Bukhara State University, Bukhara, 200100, Uzbekistan
Full-text PDF (690 kB) Citations (3)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider a $2\times2$ operator matrix $A$ (so-called generalized Friedrichs model) associated with a system of at most two quantum particles on ${\mathrm d}-$ dimensional lattice. This operator matrix acts in the direct sum of zero- and one-particle subspaces of a Fock space. We investigate the structure of the closure of the numerical range $W(A)$ of this operator in detail by terms of its matrix entries for all dimensions of the torus ${\mathbf T}^{\mathrm d}$. Moreover, we study the cases when the set $W(A)$ is closed and give necessary and sufficient conditions under which the spectrum of $A$ coincides with its numerical range.
Keywords: operator matrix, generalized Friedrichs model, Fock space, numerical range, point and approximate point spectra, annihilation and creation operators, first Schur compliment.
Funding agency
This work was partially supported by the TOSCA II Erasmus Mundus Project.
Original article submitted 17/XI/2013
revision submitted – 24/XII/2013
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 81Q10, 35P20, 47N50
Language: Russian
Citation: T. H. Rasulov, E. B. Dilmurodov, “Investigations of the Numerical Range of a Operator Matrix”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014), 50–63
Citation in format AMSBIB
\Bibitem{RasDil14}
\by T.~H.~Rasulov, E.~B.~Dilmurodov
\paper Investigations of the Numerical Range of a Operator Matrix
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 2(35)
\pages 50--63
\mathnet{http://mi.mathnet.ru/vsgtu1275}
\crossref{https://doi.org/10.14498/vsgtu1275}
\zmath{https://zbmath.org/?q=an:06968875}
\elib{https://elibrary.ru/item.asp?id=22813977}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1275
  • https://www.mathnet.ru/eng/vsgtu/v135/p50
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:535
    Full-text PDF :255
    References:105
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024