Abstract:
A new model has been developed to simulate a woven textile composite layer with a polycrystalline matrix. Based on the numerical solution of the boundary-value problem by the finite-element method, the values of stress concentration caused by local processing defects (break in a fiber, closed internal pore) under symmetric biaxial macrodeformation are obtained. The numerical solution by the finite-element method is received using the part of SALOME-MECA framework, the non-commercial package Code-Aster. The regions of maximum stress disturbance coefficients in the textile composite layer are determined. The cause of marked increase of stress disturbance coefficients is the contact with friction between the fibers of reinforcing skeleton and the shifts are the main mechanisms of polycrystalline matrix damaging. It is shown that application of additional processing operations to fill the formed voids by matrix material can decrease stress concentration and increase the ability of a material to withstand external force loads. The mechanisms responsible for initiation of damages in a polycrystalline matrix are determined.
Keywords:
woven textile composite, polycrystalline matrix, local processing defect, contact with friction, break in a fiber, stress concentration factors, symmetric biaxial macrodeformation.
Citation:
D. V. Dedkov, A. V. Zaitsev, “Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(33) (2013), 66–75
\Bibitem{DedZai13}
\by D.~V.~Dedkov, A.~V.~Zaitsev
\paper Stress concentration at a hooked-fiber textile composite layer with local technological defects under biaxial tension on transversal origin
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 4(33)
\pages 66--75
\mathnet{http://mi.mathnet.ru/vsgtu1268}
\crossref{https://doi.org/10.14498/vsgtu1268}
\zmath{https://zbmath.org/?q=an:06968805}
\elib{https://elibrary.ru/item.asp?id=21159186}
Linking options:
https://www.mathnet.ru/eng/vsgtu1268
https://www.mathnet.ru/eng/vsgtu/v133/p66
This publication is cited in the following 4 articles:
D. A. Kozhanov, “Osobennosti konechno-elementnogo modelirovaniya vida strukturnogo elementa gibkikh tkanykh kompozitov”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki, 2016, no. 1 (237), 7–15
A. C. Lyubimov, D. A. Kozhanov, “Modeling the structural element of flexible woven composites under static tension using the method of finite element in ansys”, Computer Research and Modeling, 8:1 (2016), 113–120
D. V. Dedkov, A. V. Zaitsev, A. A. Tashkinov, “Modelirovanie mekhanicheskogo povedeniya tkanykh kompozitov polotnyanogo pleteniya s lokalnymi tekhnologicheskimi defektami”, Matematicheskoe modelirovanie v estestvennykh naukakh, 1 (2015), 114–118
A. V. Zaitsev, V. S. Koksharov, I. V. Predkov, I. A. Sudakov, “Modelirovanie uslovii ekspluatatsii uplotnitelnykh elementov iz termorasshirennogo grafita”, Matematicheskoe modelirovanie v estestvennykh naukakh, 1 (2015), 130–135