Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2014, Issue 1(34), Pages 19–24
DOI: https://doi.org/10.14498/vsgtu1265
(Mi vsgtu1265)
 

This article is cited in 5 scientific papers (total in 5 papers)

Differential Equations

Generalized Integral Laplace Transform and Its Application to Solving Some Integral Equations

S. M. Zaikinaab

a Volgograd State University, Volgograd, 400062, Russian Federation
b Samara State Technical University, Samara, 443100, Russian Federation
Full-text PDF (573 kB) Citations (5)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We present integral transforms $\widetilde {\mathcal L}\left\{f(t);x\right\}$ and $\widetilde {\mathcal L}_{\gamma_1,\gamma_2,\gamma} \left\{f(t);x\right\}$, generalizing the classical Laplace transform. The $(\tau, \beta)$- generalized confluent hypergeometric functions are the kernels of these integral transforms. At certain values of the parameters these transforms coincides with the famous classical Laplace transform. The inverse formula for the transforms is given. The convolution theorem for transform $\widetilde {\mathcal L}\left\{f(t);x\right\}$ is proven. Volterra integral equations of the first kind with core containing the generalized confluent hypergeometric function ${\mathstrut}_1\Phi{\mathstrut}_1^{\tau,\beta}(a;c;z)$ are considered. The above equation is solved by the method of integral transforms. The treatment of integral transforms is applied to get the desired solution of the integral equation. The solution is obtained in explicit form.
Keywords: Laplace integral transform, integral equations, generalized hypergeometric function.
Original article submitted 30/IX/2013
revision submitted – 05/XII/2013
Bibliographic databases:
Document Type: Article
UDC: 517.442+517.581
PACS: 075
MSC: Primary 44A10, 44A20; Secondary 33C15, 33C20
Language: Russian
Citation: S. M. Zaikina, “Generalized Integral Laplace Transform and Its Application to Solving Some Integral Equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014), 19–24
Citation in format AMSBIB
\Bibitem{Zai14}
\by S.~M.~Zaikina
\paper Generalized Integral Laplace Transform and Its Application to Solving Some Integral Equations
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2014
\vol 1(34)
\pages 19--24
\mathnet{http://mi.mathnet.ru/vsgtu1265}
\crossref{https://doi.org/10.14498/vsgtu1265}
\zmath{https://zbmath.org/?q=an:06968821}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1265
  • https://www.mathnet.ru/eng/vsgtu/v134/p19
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:560
    Full-text PDF :319
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024