Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2013, Issue 1(30), Pages 270–278
DOI: https://doi.org/10.14498/vsgtu1216
(Mi vsgtu1216)
 

This article is cited in 1 scientific paper (total in 1 paper)

Procedings of the 3nd International Conference "Mathematical Physics and its Applications"
Mechanics and Classical Field Theory

On a rigorous definition of microscopic solutions of the Boltzmann–Enskog equation

A. S. Trushechkin

Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
Full-text PDF (188 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: N. N. Bogolyubov discovered microscopic solutions of the Boltzmann–Enskog equation in kinetic theory of hard spheres. These solutions have the form of sums of the delta-functions and correspond to the exact microscopic dynamics. However, this was done at the “physical level” of rigour. In particular, Bogolyubov did not discuss the products of generalized functions in the collision integral. Here we give a rigorous sense to microscopic solutions by use of regularization. Also, starting from the Vlasov equaton, we obtain new kinetic equations for a hard sphere gas.
Keywords: kinetic equations, Boltzmann–Enskog equation, Vlasov equation, microscopic solutions, generalized functions.
Original article submitted 19/XI/2012
revision submitted – 27/I/2013
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: Primary 82C40; Secondary 82C70, 35Q20, 35Q83
Language: Russian
Citation: A. S. Trushechkin, “On a rigorous definition of microscopic solutions of the Boltzmann–Enskog equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 270–278
Citation in format AMSBIB
\Bibitem{Tru13}
\by A.~S.~Trushechkin
\paper On a rigorous definition of microscopic solutions of the Boltzmann--Enskog equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 1(30)
\pages 270--278
\mathnet{http://mi.mathnet.ru/vsgtu1216}
\crossref{https://doi.org/10.14498/vsgtu1216}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1216
  • https://www.mathnet.ru/eng/vsgtu/v130/p270
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:657
    Full-text PDF :288
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024