Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2013, Issue 3(32), Pages 110–118
DOI: https://doi.org/10.14498/vsgtu1205
(Mi vsgtu1205)
 

This article is cited in 11 scientific papers (total in 11 papers)

Mathematical Modeling

On one class of analytic solutions of the stationary axisymmetric convection Bénard–Marangoni viscous incompressible fluid

S. N. Aristova, E. Yu. Prosviryakovb

a Institute of Continuous Media Mechanics UB RAS, Perm
b Kazan State Technical University (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The purpose of this work is to find solutions for the system of equations Oberbeck–Boussinesq flat convection Bénard–Marangoni a viscous incompressible fluid. In this viscous incompressible fluid the radial component of the temperature gradient may become zero. It is shown that the initial system may be reduced to the system of equations of ordinary differential equations of the eleventh order. We obtain the exact solution at the point of the extremum of the temperature (at zero including Grasgof's). Integration of equations is carried out in dimensionless variables, which are non-classical way: put the scale factor for each variable, and not by linear characteristic size of the layer. The solution is the initial approximation to the solution of convection Bénard–Marangoni in numbers Grasgof's, the big zero.
Keywords: axisymmetric thermocapillary convection (convection Bénard–Marangoni), localized parabolic heaters, exact solution, isolines, Hessian matrix, eigenvalues, localization of polynomials roots, localization of eigenvalues of the matrix.
Original article submitted 22/I/2013
revision submitted – 21/III/2013
Bibliographic databases:
Document Type: Article
UDC: 517.958:532.51
MSC: Primary 76F02, 76M45; Secondary 76F45, 76R05, 76U05
Language: Russian
Citation: S. N. Aristov, E. Yu. Prosviryakov, “On one class of analytic solutions of the stationary axisymmetric convection Bénard–Marangoni viscous incompressible fluid”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(32) (2013), 110–118
Citation in format AMSBIB
\Bibitem{AriPro13}
\by S.~N.~Aristov, E.~Yu.~Prosviryakov
\paper On one class of analytic solutions of the stationary axisymmetric convection B\'enard--Marangoni viscous incompressible fluid
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 3(32)
\pages 110--118
\mathnet{http://mi.mathnet.ru/vsgtu1205}
\crossref{https://doi.org/10.14498/vsgtu1205}
\zmath{https://zbmath.org/?q=an:06968790}
\elib{https://elibrary.ru/item.asp?id=20710187}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1205
  • https://www.mathnet.ru/eng/vsgtu/v132/p110
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:676
    Full-text PDF :278
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024