Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2013, Issue 1(30), Pages 260–269
DOI: https://doi.org/10.14498/vsgtu1168
(Mi vsgtu1168)
 

Procedings of the 3nd International Conference "Mathematical Physics and its Applications"
Mechanics and Classical Field Theory

On a fine localization of the Mathieu azimuthal numbers by Cassini ovals

Yu. N. Radayeva, M. V. Taranovab

a A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526, Russia
b N. G. Chernyshevsky Saratov State University (National Research University), Faculty of Mathematics and Mechanics, Saratov, 410012, Russia. (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The study is devoted to numerical and analytical problems concerning generating periodic and antiperiodic solutions of the angular (circumferential) Mathieu equation obtained for the circumferential harmonics of an elliptic cylinder. The Mathieu eigenvalues localization problem and computations of elliptic azimuthal numbers are discussed. First, the Sturm–Liouville eigenvalue problem for the angular Mathieu equation is reformulated as an algebraic eigenvalue problem for an infinite linear self-adjoint pentadiagonal matrix operator acting in the complex bi-infinite sequence space $l_2$. The matrix operator is then represented as a sum of a diagonal matrix and an infinite symmetric doubly stochastic matrix, which is interpreted as a finite perturbation imposed on the diagonal matrix. Effective algorithms for computations of the Mathieu eigenvalues and associated circumferential harmonics are discussed. Azimuthal numbers notion is extended to the case of elastic and thermoelastic waves propagating in a long elliptic waveguide. Estimations of upper and low bounds and thus localizations of the angular Mathieu eigenvalues and elliptic azimuthal numbers are given. Those are obtained by algebraic methods employing the Gerschgorin theorems and Cassini ovals technique. The latter provides more accurate solution of the Mathieu eigenvalues localization problem.
Keywords: Mathieu equation, eigenvalue, azimuthal number, Sturm–Liouville problem, wavenumber, wave function, diagonalization, Gerschgorin circle, Cassini oval, doubly stochastic matrix.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-00184
Original article submitted 14/XI/2012
revision submitted – 02/I/2013
Bibliographic databases:
Document Type: Article
UDC: 539.3
MSC: Primary 74F05; Secondary 65F15
Language: Russian
Citation: Yu. N. Radayev, M. V. Taranova, “On a fine localization of the Mathieu azimuthal numbers by Cassini ovals”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 260–269
Citation in format AMSBIB
\Bibitem{RadTar13}
\by Yu.~N.~Radayev, M.~V.~Taranova
\paper On a fine localization of the Mathieu azimuthal numbers by Cassini ovals
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 1(30)
\pages 260--269
\mathnet{http://mi.mathnet.ru/vsgtu1168}
\crossref{https://doi.org/10.14498/vsgtu1168}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1168
  • https://www.mathnet.ru/eng/vsgtu/v130/p260
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :205
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024