Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2013, Issue 1(30), Pages 106–143
DOI: https://doi.org/10.14498/vsgtu1140
(Mi vsgtu1140)
 

This article is cited in 2 scientific papers (total in 2 papers)

Procedings of the 3nd International Conference "Mathematical Physics and its Applications"
Equations of Mathematical Physics

On problem of nonexistence of dissipative estimate for discrete kinetic equations

E. V. Radkevich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 119899, Russia
Full-text PDF (348 kB) Citations (2)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The existence of a global solution to the discrete kinetic equations in Sobolev spaces is proved, its decomposition by summability is obtained, the influence of its oscillations generated by the interaction operator is explored. The existence of a submanifold ${\mathcal M}_{diss}$ of initial data $(u^0, v^0, w^0)$ for which the dissipative solution exists is proved. It’s shown that the interaction operator generates the solitons (progressive waves) as the nondissipative part of the solution when the initial data $(u^0, v^0, w^0)$ deviate from the submanifold ${\mathcal M}_{diss}$. The amplitude of solitons is proportional to the distance from $(u^0, v^0, w^0)$ to the submanifold ${\mathcal M}_{diss}$. It follows that the solution can stabilize as $t\to\infty$ only on compact sets of spatial variables.
Keywords: dissipative estimates, discrete kinetic equations.
Funding agency Grant number
Russian Foundation for Basic Research 09-01-12024
09-01-00288
11-01-12082
Original article submitted 18/X/2012
revision submitted – 25/XII/2012
Bibliographic databases:
Document Type: Article
UDC: 517.958:533.723
MSC: Primary 35Q20; Secondary 35C20, 35Q82, 82B40
Language: Russian
Citation: E. V. Radkevich, “On problem of nonexistence of dissipative estimate for discrete kinetic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 106–143
Citation in format AMSBIB
\Bibitem{Rad13}
\by E.~V.~Radkevich
\paper On problem of nonexistence of dissipative estimate for discrete kinetic equations
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2013
\vol 1(30)
\pages 106--143
\mathnet{http://mi.mathnet.ru/vsgtu1140}
\crossref{https://doi.org/10.14498/vsgtu1140}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1140
  • https://www.mathnet.ru/eng/vsgtu/v130/p106
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:409
    Full-text PDF :221
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024