|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2011, Volume 11, Issue 4, Pages 3–7
(Mi vngu95)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Undecidability of Elementary Theories of Rogers Semilattices on Limit Levels of Hyperarithmetical Hierarchy
N. A. Baklanova Novosibirsk State University
Abstract:
Proved that elementary theory of any non-trivial Rogers semilattice in hyperarithmetical hierarchy is undecidable.
Keywords:
numbering, Rogers semilattice, hyperarithmetical hierarchy, minimal elements, minimal covers.
Received: 25.02.2011
Citation:
N. A. Baklanova, “Undecidability of Elementary Theories of Rogers Semilattices on Limit Levels of Hyperarithmetical Hierarchy”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011), 3–7
Linking options:
https://www.mathnet.ru/eng/vngu95 https://www.mathnet.ru/eng/vngu/v11/i4/p3
|
Statistics & downloads: |
Abstract page: | 172 | Full-text PDF : | 58 | References: | 48 | First page: | 2 |
|