Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2010, Volume 10, Issue 3, Pages 17–29 (Mi vngu47)  

This article is cited in 9 scientific papers (total in 9 papers)

Stability of solutions to differential equations of neutral type

G. V. Demidenkoab, T. V. Kotovab, M. A. Skvortsovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (265 kB) Citations (9)
References:
Abstract: In the present paper we study stability of solutions to systems of quasi-linear delay differential equations of neutral type
$$ \frac{d}{dt}(y(t) + Dy(t-\tau)) = Ay(t) + By(t-\tau) + F(t,y(t),y(t-\tau)), \quad t > \tau, $$
where $A$, $B$, $D$ are $n \times n$ numerical matrices, $\tau > 0$ is a delay parameter, $F(t,u,v)$ is a real-valued vector-function satisfying Lipschitz condition with respect to $u$ and $F(t,0,0) = 0$. Stability conditions of the zero solution to the systems are obtained, uniform estimates for the solutions on the half-axis $\{t>\tau\}$ are established. In the case of asymptotic stability these estimates give the decay rate of the solutions at infinity.
Keywords: quasi-linear differential equations of neutral type, asymptotic stability, attraction domain, uniform estimates for solutions, modified Lyapunov–Krasovskii functional.
Received: 30.06.2009
English version:
Journal of Mathematical Sciences, 2012, Volume 186, Issue 3, Pages 394–406
DOI: https://doi.org/10.1007/s10958-012-0994-x
Document Type: Article
UDC: 517.929.4
Language: Russian
Citation: G. V. Demidenko, T. V. Kotova, M. A. Skvortsova, “Stability of solutions to differential equations of neutral type”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:3 (2010), 17–29; J. Math. Sci., 186:3 (2012), 394–406
Citation in format AMSBIB
\Bibitem{DemKotSkv10}
\by G.~V.~Demidenko, T.~V.~Kotova, M.~A.~Skvortsova
\paper Stability of solutions to differential equations of neutral type
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2010
\vol 10
\issue 3
\pages 17--29
\mathnet{http://mi.mathnet.ru/vngu47}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 186
\issue 3
\pages 394--406
\crossref{https://doi.org/10.1007/s10958-012-0994-x}
Linking options:
  • https://www.mathnet.ru/eng/vngu47
  • https://www.mathnet.ru/eng/vngu/v10/i3/p17
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:403
    Full-text PDF :117
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024