Siberian Journal of Pure and Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Siberian Journal of Pure and Applied Mathematics, 2018, Volume 18, Issue 1, Pages 73–90
DOI: https://doi.org/10.17377/PAM.2018.18.7
(Mi vngu465)
 

Orthoregressional-algebraic parameter identification method for linear differential equations

A. A. Lomovab

a Sobolev Institute of Mathematics SB RAS, 4, Akad. Koptyuga pr., Novosibirsk 630090, Russia
b Novosibirsk State University, 1, Pirogova St., Novosibirsk 630090, Russia
References:
Abstract: A combined orthoregressional-algebraic approach to the parameter identification of linear differential equations from solution measurements with additive noise is proposed. It is based on the algebraic Fliess–Sira-Ramirez method in conjunction with the orthogonal regression (TLS) method in the space of measurements transformed by the integral operators of convolution type. The consistency of the orthoregressional-algebraic method is established and a numerical comparison with the asymptotically optimal variational identification method is performed.
Keywords: linear differential equations, parameter identification, algebraic method, variational identification method, orthogonal regression, total least squares, orthoregressional-algebraic method, consistency.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00592_а
The work was supported by the Russian Foundation for Basic Research (project No. 16-01-00592).
Received: 09.01.2017
English version:
Journal of Mathematical Sciences, 2021, Volume 253, Issue 3, Pages 391–406
DOI: https://doi.org/10.1007/s10958-021-05237-1
Document Type: Article
UDC: 681.5.015
Language: Russian
Citation: A. A. Lomov, “Orthoregressional-algebraic parameter identification method for linear differential equations”, Sib. J. Pure and Appl. Math., 18:1 (2018), 73–90; J. Math. Sci., 253:3 (2021), 391–406
Citation in format AMSBIB
\Bibitem{Lom18}
\by A.~A.~Lomov
\paper Orthoregressional-algebraic parameter identification method for linear differential equations
\jour Sib. J. Pure and Appl. Math.
\yr 2018
\vol 18
\issue 1
\pages 73--90
\mathnet{http://mi.mathnet.ru/vngu465}
\crossref{https://doi.org/10.17377/PAM.2018.18.7}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 253
\issue 3
\pages 391--406
\crossref{https://doi.org/10.1007/s10958-021-05237-1}
Linking options:
  • https://www.mathnet.ru/eng/vngu465
  • https://www.mathnet.ru/eng/vngu/v18/i1/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал чистой и прикладной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024