|
On $\Sigma$-definability of hereditarily finite and list superstructures
S. A. Aleksandrova Novosibirsk State University,
1, Pirogova St., Novosibirsk 630090, Russia
Abstract:
This work is concerned with properties of hereditarily finite superstructures $\mathbb{HF}(\mathfrak{M})$ and hereditarily finite
list superstructures $\mathbb{HW}(\mathfrak{M})$. The main result states that any relation $\Sigma$-definable in a hereditarily finite
superstructure $\mathbb{HF}(\mathfrak{M})$ can also be defined by $\Sigma$-formula in a hereditarily finite list superstructure $\mathbb{HW}(\mathfrak{M})$ and vice versa.
Keywords:
computability, $\Sigma$-definability, $\Sigma$-definable structure, hereditarily finite superstructure, hereditarily finite list superstructure.
Received: 08.12.2017
Citation:
S. A. Aleksandrova, “On $\Sigma$-definability of hereditarily finite and list superstructures”, Sib. J. Pure and Appl. Math., 18:1 (2018), 3–10; J. Math. Sci., 246:6 (2020), 701–708
Linking options:
https://www.mathnet.ru/eng/vngu459 https://www.mathnet.ru/eng/vngu/v18/i1/p3
|
Statistics & downloads: |
Abstract page: | 253 | Full-text PDF : | 39 | References: | 38 | First page: | 17 |
|