Siberian Journal of Pure and Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Siberian Journal of Pure and Applied Mathematics, 2017, Volume 17, Issue 3, Pages 52–57
DOI: https://doi.org/10.17377/PAM.2017.17.5
(Mi vngu446)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the non-uniqueness of the solution of the inner Neumann–Gellerstedt problem for the Lavrent'ev–Bitsadze equation

E. I. Moiseev, T. E. Moiseev, A. A. Kholomeeva

Lomonosov Moscow State University, 1, Leninskie Gory, 119992 Moscow, Russia
Full-text PDF (120 kB) Citations (1)
References:
Abstract: It is known that the Gellerstedt problem for the Lavrent'ev–Bitsadze equation under classical conditions of gluing a solution on the line of degeneracy of the equation has only trivial solutions. In particular, in the monograph A. V. Bitsadze “Some classes of partial differential equations” such kind of problem was investigated by the method of reduction to singular integral equations. In the works of T. E. Moiseyev, it was shown for the first time that the homogeneous problem of Gellerstedt with data on external characteristics has a nontrivial solution under the Frankl-type gluing condition for the solution on the line of degeneracy of the equation. In this paper we consider the homogeneous Neumann–Gellerstedt problem with data on internal characteristics. It is proved that this problem has a nontrivial solution under the Frankl-type gluing conditions for the solution on the line of degeneracy of the equation.
Keywords: mixed-type equation, boundary problem, uniqueness of the solution of the boundary problem.
Funding agency Grant number
Russian Science Foundation 16-11-10194
The work is supported by the Russian Scientific Foundation (project No. 16-11-10194).
Received: 18.12.2016
English version:
Journal of Mathematical Sciences, 2019, Volume 237, Issue 4, Pages 563–568
DOI: https://doi.org/10.1007/s10958-019-04182-4
Document Type: Article
UDC: 517.956.6
Language: Russian
Citation: E. I. Moiseev, T. E. Moiseev, A. A. Kholomeeva, “On the non-uniqueness of the solution of the inner Neumann–Gellerstedt problem for the Lavrent'ev–Bitsadze equation”, Sib. J. Pure and Appl. Math., 17:3 (2017), 52–57; J. Math. Sci., 237:4 (2019), 563–568
Citation in format AMSBIB
\Bibitem{MoiMoiKho17}
\by E.~I.~Moiseev, T.~E.~Moiseev, A.~A.~Kholomeeva
\paper On the non-uniqueness of the solution of the inner Neumann--Gellerstedt problem for the Lavrent'ev--Bitsadze equation
\jour Sib. J. Pure and Appl. Math.
\yr 2017
\vol 17
\issue 3
\pages 52--57
\mathnet{http://mi.mathnet.ru/vngu446}
\crossref{https://doi.org/10.17377/PAM.2017.17.5}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 4
\pages 563--568
\crossref{https://doi.org/10.1007/s10958-019-04182-4}
Linking options:
  • https://www.mathnet.ru/eng/vngu446
  • https://www.mathnet.ru/eng/vngu/v17/i3/p52
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал чистой и прикладной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025