|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2010, Volume 10, Issue 2, Pages 54–60
(Mi vngu40)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
The Number of Finite Index Subgroups of Baumslag–Solitar Groups
F. A. Dudkina, V. A. Churkinba a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract:
Gelman established a simple formula for the number of finite index subgroups of Baumslag–Solitar groups $BS(p,q)=\langle a,\ t\ | \ t^{-1}a^pt=a^q \rangle$, where $p$ and $q$ are co-prime integers. In this paper we give a generalization of this formula for arbitrary nonzero integers. The proof was obtained by calculating the number of permutations $y\in S_n$ such that subgroup of $S_n$ generated by $x$ and $y$ is transitive, where $x\in S_n$ is given.
Keywords:
Baumslag–Solitar group, the number of finite index subgroups, transitive two generator subgroups of $S_n$.
Received: 17.03.2010
Citation:
F. A. Dudkin, V. A. Churkin, “The Number of Finite Index Subgroups of Baumslag–Solitar Groups”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010), 54–60; J. Math. Sci., 186:3 (2012), 387–393
Linking options:
https://www.mathnet.ru/eng/vngu40 https://www.mathnet.ru/eng/vngu/v10/i2/p54
|
Statistics & downloads: |
Abstract page: | 178 | Full-text PDF : | 77 | References: | 46 | First page: | 1 |
|