|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2010, Volume 10, Issue 2, Pages 37–44
(Mi vngu38)
|
|
|
|
Scott Rank of Automatic Partial Orderings
A. A. Gavryushkina Novosibirsk State University
Abstract:
One of the main problems in the theory of automatic structures is the problem of characterization of automatic structures and subclasses of automatic structures. Scott ranks measure the complexity of the description of the isomorphism types of structures. M. Minnes and B. Khoussainov showed that for every ordinal $\alpha$ at most $\omega_1^{CK}+1$ there exists an automatic structure of Scott rank $\alpha$ [7;8]. In this paper we show that the same result holds for automatic partial orders.
Keywords:
automatic structure, partial order, Scott rank.
Received: 23.06.2009
Citation:
A. A. Gavryushkina, “Scott Rank of Automatic Partial Orderings”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010), 37–44
Linking options:
https://www.mathnet.ru/eng/vngu38 https://www.mathnet.ru/eng/vngu/v10/i2/p37
|
Statistics & downloads: |
Abstract page: | 208 | Full-text PDF : | 58 | References: | 52 | First page: | 1 |
|