Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2010, Volume 10, Issue 2, Pages 37–44 (Mi vngu38)  

Scott Rank of Automatic Partial Orderings

A. A. Gavryushkina

Novosibirsk State University
References:
Abstract: One of the main problems in the theory of automatic structures is the problem of characterization of automatic structures and subclasses of automatic structures. Scott ranks measure the complexity of the description of the isomorphism types of structures. M. Minnes and B. Khoussainov showed that for every ordinal $\alpha$ at most $\omega_1^{CK}+1$ there exists an automatic structure of Scott rank $\alpha$ [7;8]. In this paper we show that the same result holds for automatic partial orders.
Keywords: automatic structure, partial order, Scott rank.
Received: 23.06.2009
Document Type: Article
UDC: 510.51
Language: Russian
Citation: A. A. Gavryushkina, “Scott Rank of Automatic Partial Orderings”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010), 37–44
Citation in format AMSBIB
\Bibitem{Gav10}
\by A.~A.~Gavryushkina
\paper Scott Rank of Automatic Partial Orderings
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2010
\vol 10
\issue 2
\pages 37--44
\mathnet{http://mi.mathnet.ru/vngu38}
Linking options:
  • https://www.mathnet.ru/eng/vngu38
  • https://www.mathnet.ru/eng/vngu/v10/i2/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :58
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024