Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2015, Volume 15, Issue 2, Pages 38–50
DOI: https://doi.org/10.17377/PAM.2015.15.203
(Mi vngu366)
 

This article is cited in 1 scientific paper (total in 1 paper)

Propagation of perturbations in a thin layer of a fluid with viscosity stratification

P. V. Kovtunenkoab

a Novosibirsk State University
b Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We consider a non-linear system of equations describing motion of a viscosity-layered fluid with a free surface in a long-wave approximation. In a semi-Lagrangian coordinate system we rewrite the governing equations in a integro-differencial form for which the necessary and sufficient hyperbolicity conditions are stated. An approximation for the integro-differential model in a form of finite-dimensional system of differential conservation laws with a right part is suggested. A modeling of propagation of nonlinear perturbations in a fluid with viscosity stratification was performed. In particular a problem about the evolution of a more viscous fluid column in a less viscous fluid during the passage of wave disturbances is considered.
Keywords: long waves, layered flows, viscous fluid, integro-differential equations.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-2133.2014.1
Received: 17.12.2014
English version:
Journal of Mathematical Sciences, 2016, Volume 215, Issue 4, Pages 499–509
DOI: https://doi.org/10.1007/s10958-016-2854-6
Document Type: Article
UDC: 517.957+532.526
Language: Russian
Citation: P. V. Kovtunenko, “Propagation of perturbations in a thin layer of a fluid with viscosity stratification”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:2 (2015), 38–50; J. Math. Sci., 215:4 (2016), 499–509
Citation in format AMSBIB
\Bibitem{Kov15}
\by P.~V.~Kovtunenko
\paper Propagation of perturbations in a thin layer of a fluid with viscosity stratification
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2015
\vol 15
\issue 2
\pages 38--50
\mathnet{http://mi.mathnet.ru/vngu366}
\crossref{https://doi.org/10.17377/PAM.2015.15.203}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 215
\issue 4
\pages 499--509
\crossref{https://doi.org/10.1007/s10958-016-2854-6}
Linking options:
  • https://www.mathnet.ru/eng/vngu366
  • https://www.mathnet.ru/eng/vngu/v15/i2/p38
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :38
    References:41
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024