Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2014, Volume 14, Issue 4, Pages 64–78 (Mi vngu356)  

Spectral Analysis of Differential Operator with Involution

E. Yu. Romanova

Voronezh State University
References:
Abstract: The paper deals with the differential operator $L$ with involution, defined by a differential expression $l(y)=y'(x) - q(x)y(\omega-x)$ where $q\in L_2[0,\omega]$ and boundary conditions $y(0)=y(\omega).$ The method of similar operators is used to analyze the spectral properties of the operator. The asymptotic of spectrum and the estimations for equiconvergence of spectral decomposition are obtained.
Keywords: spectrum of operator, differential operator with involution, similar operators method, asymptotic of spectrum, spectral decomposition, equiconvergence of spectral decomposition.
Received: 25.12.2013
English version:
Journal of Mathematical Sciences, 2016, Volume 213, Issue 6, Pages 897–909
DOI: https://doi.org/10.1007/s10958-016-2750-0
Document Type: Article
UDC: 517.19
Language: Russian
Citation: E. Yu. Romanova, “Spectral Analysis of Differential Operator with Involution”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:4 (2014), 64–78; J. Math. Sci., 213:6 (2016), 897–909
Citation in format AMSBIB
\Bibitem{Rom14}
\by E.~Yu.~Romanova
\paper Spectral Analysis of Differential Operator with Involution
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2014
\vol 14
\issue 4
\pages 64--78
\mathnet{http://mi.mathnet.ru/vngu356}
\transl
\jour J. Math. Sci.
\yr 2016
\vol 213
\issue 6
\pages 897--909
\crossref{https://doi.org/10.1007/s10958-016-2750-0}
Linking options:
  • https://www.mathnet.ru/eng/vngu356
  • https://www.mathnet.ru/eng/vngu/v14/i4/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :65
    References:79
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024